Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1979 Jun;291:351–366. doi: 10.1113/jphysiol.1979.sp012818

Discharge patterns of Purkinje cells in cats anaesthetized with alpha-chloralose.

D M Armstrong, B Cogdell, R J Harvey
PMCID: PMC1280906  PMID: 480225

Abstract

1. Micro-electrodes have been used to record from 119 Purkinje (P) cells in the paramedian lobule of the cerebellum in cats anaesthetized with alpha-chloralose. 2. The spontaneous discharge rate and degree of irregularity of the discharge varied very much from one cell to another; the over-all mean rate (about 25/sec) was a little lower than has been reported either for barbiturate anaesthetized or for decerebrate unanaesthetized preparations. 3. Following electrical stimulation of a peripheral nerve, most P cells responded with both simple spikes and a climbing fibre response. This initial response was usually succeeded by a prolonged period of silence (over-all mean duration 350 msec) before resumption of the tonic simple spike discharge. Similar response-silence sequences could also be evoked by mechanical stimulation such as a tap applied to the pads of the forepaw. 4. Electrical stimulation of the inferior olive evoked climbing fibre responses followed by a prolonged pause in the simple spike discharge of the cell. 5. In six individual preparations, recordings were made both from P cells of the paramedian lobule and from neurones of nucleus interpositus (to which the former project). Comparison of the responses of the two types of neurone to peripheral nerve and inferior olivary stimulation showed that the end of the pauses in P cell firing correlated well with the end of a prolonged period of facilitation of the interpositus neurones. 6. These results support the hypothesis advanced in an earlier report (Armstrong, Cogdell & Harvey, 1975) that the prolonged facilitatory responses of interpositus neurones are essentially disinhibitory responses resulting from reduction in the activity of overlying cells, and that responses of P cells and of interpositus neurones consist, in general, of modulations of activity which are mutually out of phase.

Full text

PDF
351

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson G., Oscarsson O. Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res. 1978 Aug 15;32(4):565–579. doi: 10.1007/BF00239553. [DOI] [PubMed] [Google Scholar]
  2. Armstrong D. M., Cogdell B., Harvey R. Effects of afferent volleys from the limbs on the discharge patterns of interpositus neurones in cats anaesthetized with alpha-chloralose. J Physiol. 1975 Jun;248(2):489–517. doi: 10.1113/jphysiol.1975.sp010985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong D. M. Functional significance of connections of the inferior olive. Physiol Rev. 1974 Apr;54(2):358–417. doi: 10.1152/physrev.1974.54.2.358. [DOI] [PubMed] [Google Scholar]
  4. Armstrong D. M., Harvey R. J., Schild R. F. Spino-olivocerebellar pathways to the posterior lobe of the cat cerebellum. Exp Brain Res. 1973 Aug 31;18(1):1–18. doi: 10.1007/BF00236553. [DOI] [PubMed] [Google Scholar]
  5. Armstrong D. M., Harvey R. J., Schild R. F. Topographical localization in the olivo-cerebellar projection: an electrophysiological study in the cat. J Comp Neurol. 1974 Apr 1;154(3):287–302. doi: 10.1002/cne.901540305. [DOI] [PubMed] [Google Scholar]
  6. Armstrong D. M., Rawson J. A. Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J Physiol. 1979 Apr;289:425–448. doi: 10.1113/jphysiol.1979.sp012745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bell C. C., Kawasaki T. Relations among climbing fiber responses of nearby Purkinje Cells. J Neurophysiol. 1972 Mar;35(2):155–169. doi: 10.1152/jn.1972.35.2.155. [DOI] [PubMed] [Google Scholar]
  8. Bloedel J. R., Burton J. E. Electrophysiological evidence for a mossy fiber input to the cerebellar cortex activated indirectly by collaterals of spinocerebellar pathways. J Neurophysiol. 1970 Mar;33(2):308–319. doi: 10.1152/jn.1970.33.2.308. [DOI] [PubMed] [Google Scholar]
  9. Bloedel J. R., Roberts W. J. Action of climbing fibers in cerebellar cortex of the cat. J Neurophysiol. 1971 Jan;34(1):17–31. doi: 10.1152/jn.1971.34.1.17. [DOI] [PubMed] [Google Scholar]
  10. Bloedel J. R., Roberts W. J. Functional relationship among neurons of the cerebellar cortex in the absence of anesthesia. J Neurophysiol. 1969 Jan;32(1):75–84. doi: 10.1152/jn.1969.32.1.75. [DOI] [PubMed] [Google Scholar]
  11. Boylls C. C. Prolonged alterations of muscle activity induced in locomoting premammillary cats by microstimulation of the inferior olive. Brain Res. 1978 Dec 29;159(2):445–450. doi: 10.1016/0006-8993(78)90556-5. [DOI] [PubMed] [Google Scholar]
  12. Brodal A., Walberg F. The olivocerebellar projection in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. IV. The projection to the anterior lobe. J Comp Neurol. 1977 Mar 1;172(1):85–108. doi: 10.1002/cne.901720105. [DOI] [PubMed] [Google Scholar]
  13. Burg D., Rubia F. J. Inhibition of cerebellar Purkinje cells by climbing fiber input. Pflugers Arch. 1972;337(4):367–372. doi: 10.1007/BF00586652. [DOI] [PubMed] [Google Scholar]
  14. Cody F. W., Richardson H. C. Responses of cerebellar interpositus nuclear neurones to trigeminal inputs in the cat [proceedings]. J Physiol. 1978 Apr;277:62P–63P. [PubMed] [Google Scholar]
  15. Eccles J. C., Faber D. S., Murphy J. T., Sabah N. H., Táboríková H. Afferent volleys in limb nerves influencing impulse discharges in cerebellar cortex. II. In Purkyne cells. Exp Brain Res. 1971 Jul 26;13(1):36–53. [PubMed] [Google Scholar]
  16. Eccles J. C., Rosen I., Scheid P., Taborikova H. Cutaneous afferent responses in interpositus neurones of the cat. Brain Res. 1972 Jul 13;42(1):207–211. doi: 10.1016/0006-8993(72)90055-8. [DOI] [PubMed] [Google Scholar]
  17. Eccles J. C., Sabah N. H., Schmidt R. F., Táboríková H. Cerebellar Purkyne cell responses to cutaneous mechanoreceptors. Brain Res. 1971 Jul 23;30(2):419–424. doi: 10.1016/0006-8993(71)90094-1. [DOI] [PubMed] [Google Scholar]
  18. Ferin M., Grigorian R. A., Strata P. Mossy and climbing fibre activation in the cat cerebellum by stimulation of the labyrinth. Exp Brain Res. 1971;12(1):1–17. doi: 10.1007/BF00234413. [DOI] [PubMed] [Google Scholar]
  19. Freeman J. A. Responses of cat cerebellar Purkinje cells to convergent inputs from cerebral cortex and peripheral sensory systems. J Neurophysiol. 1970 Nov;33(6):697–712. doi: 10.1152/jn.1970.33.6.697. [DOI] [PubMed] [Google Scholar]
  20. Groenewegen H. J., Voogd J. The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol. 1977 Aug 1;174(3):417–488. doi: 10.1002/cne.901740304. [DOI] [PubMed] [Google Scholar]
  21. Harvey R. J. Patterns of output firing generated by a many-input neuronal model for different model parameters and patterns of synaptic drive. Brain Res. 1978 Jul 14;150(2):259–276. doi: 10.1016/0006-8993(78)90279-2. [DOI] [PubMed] [Google Scholar]
  22. Harvey R. J. Some properties of a model of the mammalian cerebellum [proceedings]. J Physiol. 1978 Apr;277:60P–60P. [PubMed] [Google Scholar]
  23. Hobson J. A., McCarley R. W. Spontaneous discharge rates of cat cerebellar Purkinje cells in sleep and waking. Electroencephalogr Clin Neurophysiol. 1972 Nov;33(5):457–469. doi: 10.1016/0013-4694(72)90210-6. [DOI] [PubMed] [Google Scholar]
  24. Ito M., Yoshida M., Obata K., Kawai N., Udo M. Inhibitory control of intracerebellar nuclei by the purkinje cell axons. Exp Brain Res. 1970;10(1):64–80. doi: 10.1007/BF00340519. [DOI] [PubMed] [Google Scholar]
  25. Latham A., Paul D. H. Spontaneous activity of cerebellar Purkinje cells and their responses to impulses in climbing fibres. J Physiol. 1971 Feb;213(1):135–156. doi: 10.1113/jphysiol.1971.sp009373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Llinas R., Baker R., Sotelo C. Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol. 1974 May;37(3):560–571. doi: 10.1152/jn.1974.37.3.560. [DOI] [PubMed] [Google Scholar]
  27. MacGregor R. J., Oliver R. M. A model for repetitive firing in neurons. Kybernetik. 1974;16(1):53–64. doi: 10.1007/BF00270295. [DOI] [PubMed] [Google Scholar]
  28. Mano N. Changes of simple and complex spike activity of cerebellar purkinje cells with sleep and waking. Science. 1970 Dec 18;170(3964):1325–1327. doi: 10.1126/science.170.3964.1325. [DOI] [PubMed] [Google Scholar]
  29. Marchesi G. F., Strata P. Mossy and climbing fiber activity during phasic and tonic phenomena of sleep. Pflugers Arch. 1971;323(3):219–240. doi: 10.1007/BF00586385. [DOI] [PubMed] [Google Scholar]
  30. Martin M. R., Caddy K. W. Electrophysiological studies on interpositus neurones in the normal and Lurcher mutant mouse. Exp Brain Res. 1977 Aug 31;29(2):275–281. doi: 10.1007/BF00237047. [DOI] [PubMed] [Google Scholar]
  31. Martinez F. E., Crill W. E., Kennedy T. T. Electrogenesis of cerebellar Purkinje cell responses in cats. J Neurophysiol. 1971 May;34(3):348–356. doi: 10.1152/jn.1971.34.3.348. [DOI] [PubMed] [Google Scholar]
  32. Matsushita M., Ikeda M. Olivary projections to the cerebellar nuclei in the cat. Exp Brain Res. 1970 Jun 25;10(5):488–500. doi: 10.1007/BF00234265. [DOI] [PubMed] [Google Scholar]
  33. Matsushita M., Ikeda M. Spinal projections to the cerebellar nuclei in the cat. Exp Brain Res. 1970 Jun 25;10(5):501–511. doi: 10.1007/BF00234266. [DOI] [PubMed] [Google Scholar]
  34. McCarley R. W., Hobson J. A. Simple spike firing patterns of cat cerebellar Purkinje cells in sleep and waking. Electroencephalogr Clin Neurophysiol. 1972 Nov;33(5):471–483. doi: 10.1016/0013-4694(72)90211-8. [DOI] [PubMed] [Google Scholar]
  35. Murphy J. T., Sabah N. H. Cerebellar Purkinje cell responses to afferent inputs. I. Climbing fiber activation. Brain Res. 1971 Feb 5;25(3):449–467. doi: 10.1016/0006-8993(71)90454-9. [DOI] [PubMed] [Google Scholar]
  36. Murphy J. T., Sabah N. H. Spontaneous firing of cerebellar Purkinje cells in decerebrate and barbiturate anesthetized cats. Brain Res. 1970 Feb 3;17(3):515–519. doi: 10.1016/0006-8993(70)90259-3. [DOI] [PubMed] [Google Scholar]
  37. STEIN R. B. A THEORETICAL ANALYSIS OF NEURONAL VARIABILITY. Biophys J. 1965 Mar;5:173–194. doi: 10.1016/s0006-3495(65)86709-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Scholfield C. N. A barbiturate induced intensification of the inhibitory potential in slices of guinea-pig olfactory cortex. J Physiol. 1978 Feb;275:559–566. doi: 10.1113/jphysiol.1978.sp012208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Talbott R. E., Towe A. L., Kennedy T. T. Physiological and histological classification of cerebellar neurons in chloralose-anesthetized cats. Exp Neurol. 1967 Sep;19(1):46–64. doi: 10.1016/0014-4886(67)90006-4. [DOI] [PubMed] [Google Scholar]
  40. Thach W. T. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968 Sep;31(5):785–797. doi: 10.1152/jn.1968.31.5.785. [DOI] [PubMed] [Google Scholar]
  41. Thach W. T. Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. J Neurophysiol. 1970 Jul;33(4):537–547. doi: 10.1152/jn.1970.33.4.537. [DOI] [PubMed] [Google Scholar]
  42. de Montigny C., Lamarre Y. Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system of the cat. Brain Res. 1973 Apr 13;53(1):81–95. doi: 10.1016/0006-8993(73)90768-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES