Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1979 Jun;291:367–380. doi: 10.1113/jphysiol.1979.sp012819

Chloride, sodium, potassium and hydrogen ion transport in isolated canine gastric mucosa.

Y J Kuo, L L Shanbour
PMCID: PMC1280907  PMID: 39165

Abstract

1. The fluxes of isotopically labelled Na+, Cl- and K+ in each direction and H+ secretion across isolated dog gastric mucosa were measured under short-circuit conditions. 2. In the non-stimulated state, the net flux of Na+ was 6.61 micronequiv/cm2.hr from mucosal (luminal, secretory) to serosal (nutrient, blood) side, whereas the net flux of Cl- was only 0.79 micronequiv/cm2.hr, and the direction was from serosal to mucosal side. 3. There was a positive correlation between the net flux of Cl- and acid secretion, however, net flux of Na+ was not correlated with acid secretion initiated by secretagogue treatment. 4. With ion substitution studies, only replacement of mucosal Na+ with choline produced a highly significant decrease in potential difference (p.d.). This indicates that active transport of Na+ from the mucosal to the serosal side is the most important source for the generation of the gastric p.d. in dog gastric mucosa. 5. From ion substitution studies, it was also observed that Cl- in either mucosal or serosal solution is necessary for maintaining acid secretion; whereas only serosal Na+ and K+ are essential for acid secretion. Removal of either Na+ or K+ from the mucosal solution had no effect on acid secretion. 6. Substitution of SO2-(4) for Cl- had no effect on active transport of Na+, but choline substitution for Na+ diminished active transport of Cl-.

Full text

PDF
367

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVIS T. L., RUTLEDGE J. R., KEESEE D. C., BAJANDAS F. J., REHM W. S. ACID SECRETION, POTENTIAL, AND RESISTANCE OF FROG STOMACH IN K+-FREE SOLUTIONS. Am J Physiol. 1965 Jul;209:146–152. doi: 10.1152/ajplegacy.1965.209.1.146. [DOI] [PubMed] [Google Scholar]
  2. CODE C. F., HIGGINS J. A., MOLL J. C., ORVIS A. L., SCHOLER J. F. The influence of acid on the gastric absorption of water, sodium and potassium. J Physiol. 1963 Apr;166:110–119. doi: 10.1113/jphysiol.1963.sp007093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CUMMINS J. T., VAUGHAN B. E. IONIC RELATIONSHIPS OF THE BIOELECTROGENIC MECHANISM IN ISOLATED RAT STOMACH. Biochim Biophys Acta. 1965 Jan 25;94:280–292. doi: 10.1016/0926-6585(65)90032-4. [DOI] [PubMed] [Google Scholar]
  4. DAVENPORT H. W., ABBRECHT P. H. POTASSIUM MOVEMENT ACROSS SEROSAL AND MUCOSAL SURFACES OF FROG GASTRIC MUCOSA. Am J Physiol. 1965 Mar;208:528–530. doi: 10.1152/ajplegacy.1965.208.3.528. [DOI] [PubMed] [Google Scholar]
  5. Ferreira H. G., Harrison F. A., Keynes R. D., Zurich L. Ion transport across an isolated preparation of sheep rumen epithelium. J Physiol. 1972 Apr;222(1):77–93. doi: 10.1113/jphysiol.1972.sp009788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forte J. G., Machen T. E. Transport and electrical phenomena in resting and secreting piglet gastric mucosa. J Physiol. 1975 Jan;244(1):33–51. doi: 10.1113/jphysiol.1975.sp010783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forte J. G. Three components of Cl flux across isolated bullfrog gastric mucosa. Am J Physiol. 1969 Jan;216(1):167–174. doi: 10.1152/ajplegacy.1969.216.1.167. [DOI] [PubMed] [Google Scholar]
  8. Fromm D., Schwartz J. H., Quijano R. Transport of H plus and other electrolytes across isolated gastric mucosa of the rabbit. Am J Physiol. 1975 Jan;228(1):166–171. doi: 10.1152/ajplegacy.1975.228.1.166. [DOI] [PubMed] [Google Scholar]
  9. HARRIS J. B., EDELMAN I. S. Transport of potassium by the gastric mucosa of the frog. Am J Physiol. 1960 Feb;198:280–284. doi: 10.1152/ajplegacy.1960.198.2.280. [DOI] [PubMed] [Google Scholar]
  10. HEINZ E., DURBIN R. Evidence for an independent hydrogen-ion pump in the stomach. Biochim Biophys Acta. 1959 Jan;31(1):246–247. doi: 10.1016/0006-3002(59)90461-5. [DOI] [PubMed] [Google Scholar]
  11. Hansen T., Slegers J. F., Bonting S. L. Gastric acid secretion in the lizard. Ionic requirements and effects of inhibitors. Biochim Biophys Acta. 1975 Apr 8;382(4):590–608. doi: 10.1016/0005-2736(75)90225-4. [DOI] [PubMed] [Google Scholar]
  12. Hirschowitz B. I. Histamine dose responses in gastric fistula dogs--decreasing secretion with time. Gastroenterology. 1968 Apr;54(4):523–531. [PubMed] [Google Scholar]
  13. Hutchison G. A., Hirschowitz B. I. Two models of gastric H, Na, K, and Cl secretion in the dog using histamine and pentagastrin. Am J Physiol. 1969 Mar;216(3):487–492. doi: 10.1152/ajplegacy.1969.216.3.487. [DOI] [PubMed] [Google Scholar]
  14. Kitahara S., Fox K. R., Hogben C. A. Acid secretion, Na+ absorption, and the origin of the potential difference across isolated mammalian stomachs. Am J Dig Dis. 1969 Apr;14(4):221–238. doi: 10.1007/BF02235951. [DOI] [PubMed] [Google Scholar]
  15. Kuo Y. J., Shanbour L. L. Acid secretion by isolated canine gastric mucosa. J Physiol. 1978 Dec;285:325–340. doi: 10.1113/jphysiol.1978.sp012574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuo Y. J., Shanbour L. L. Mechanism of action of aspirin on canine gastric mucosa. Am J Physiol. 1976 Mar;230(3):762–767. doi: 10.1152/ajplegacy.1976.230.3.762. [DOI] [PubMed] [Google Scholar]
  17. Kuo Y. J., Shanbour L. L., Sernka T. J. Effect of ethanol on permeability and ion transport in the isolated dog stomach. Am J Dig Dis. 1974 Sep;19(9):818–824. doi: 10.1007/BF01071941. [DOI] [PubMed] [Google Scholar]
  18. Machen T. E., Silen W., Forte J. G. Na+ transport by mammalian stomach. Am J Physiol. 1978 Mar;234(3):E228–E235. doi: 10.1152/ajpendo.1978.234.3.E228. [DOI] [PubMed] [Google Scholar]
  19. REHM W. S. Acid secretion, resistance, short-circuit current, and voltage-clamping in frog's stomach. Am J Physiol. 1962 Jul;203:63–72. doi: 10.1152/ajplegacy.1962.203.1.63. [DOI] [PubMed] [Google Scholar]
  20. REHM W. S., DAVIS T. L., CHANDLER C., GOHMANN E., Jr, BASHIRELAHI A. Frog gastric mucosae bathed in chloride-free solutions. Am J Physiol. 1963 Feb;204:233–242. doi: 10.1152/ajplegacy.1963.204.2.233. [DOI] [PubMed] [Google Scholar]
  21. Sachs G., Shoemaker R. L., Hirschowitz B. L. Effects of sodium removal on acid secretion by the frog gastric mucosa. Proc Soc Exp Biol Med. 1966 Oct;123(1):47–52. doi: 10.3181/00379727-123-31398. [DOI] [PubMed] [Google Scholar]
  22. Sernka T. J., Hogben C. A. Active ion transport by isolated gastric mucosae of rat and guinea pig. Am J Physiol. 1969 Nov;217(5):1419–1424. doi: 10.1152/ajplegacy.1969.217.5.1419. [DOI] [PubMed] [Google Scholar]
  23. Shanbour L. L. An automatic voltage-clamp system for in vivo or in vitro studies. Am J Dig Dis. 1974 Apr;19(4):367–371. doi: 10.1007/BF01072528. [DOI] [PubMed] [Google Scholar]
  24. Shoemaker R. L., Hirschowitz B. I., Sachs G. Hormonal stimulation of Necturus gastric mucosa in vitro. Am J Physiol. 1967 May;212(5):1013–1016. doi: 10.1152/ajplegacy.1967.212.5.1013. [DOI] [PubMed] [Google Scholar]
  25. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES