Abstract
We report electron paramagnetic resonance (EPR) experiments in frozen solutions of unreduced and reduced photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides R-26 in which Fe2+ has been chemically replaced by the isotope 65Cu2+. Samples in which the primary quinone acceptor QA is unreduced (Cu2+QA:RCs) give a powder EPR spectrum typical for Cu2+ having axial symmetry, corresponding to a d(x2 - y2) ground state orbital, with g values g parallel = 2.314 +/- 0.001 and g perpendicular = 2.060 +/- 0.003. The spectrum shows a hyperfine structure for the nuclear spin of copper (65I = 3/2) with A parallel = (-167 +/- 1) x 10(-4) cm-1 and /A perpendicular/ = (16 +/- 2) x 10(-4) cm-1, and hyperfine couplings with three nitrogen ligands. This has been verified in samples containing the naturally occurring 14N isotope (l = 1), and in samples where the nitrogen ligands to copper were replaced by the isotope 15N (l = 1/2). We introduce a model for the electronic structure at the position of the metal ion which reflects the recently determined three-dimensional structure of the RCs of Rb. sphaeroides (Allen, J. P., G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees. 1987. Proc. Natl. Acad. Sci. USA. 84:5730: Allen, J. P., G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees. 1988. Proc. Natl. Acad. Sci. USA, 85:8487) as well as our EPR results. In this model the copper ion is octahedrally coordinated to three nitrogens from histidine residues and to one carboxylate oxygen from a glutamic acid, forming a distorted square in the plane of the d(x2 = y2) ground state orbital. It is also bound to a nitrogen of another histidine and to the other carboxylate oxygen of the same glutamic acid residue, in a direction approximately normal to this plane. The EPR spectrum changes drastically when the quinone acceptor QA is chemically reduced (Cu2+QA-:RCs); the change is due to the exchange and dipole-dipole interactions between the Cu2+ and QA- spins. A model spin Hamiltonian proposed for this exchange coupled cooper-quinone spin dimer accounts well for the observed spectra. From a comparison of the EPR spectra of the Cu2+QA:RC and CU2+QA-:RC complexes we obtain the values /J0/ = (0.30 +/- 0.02) K for the isotropic exchange coupling, and /d/ = (0.010 +/- 0.002) K for the projection of the dipole-dipole interaction tensor on the symmetry axis of the copper spin. From the EPR experiments only the relative signs of J0 and d can be deduced; it was determined that they have the same sign. The magnitude of the exchange coupling calculated for Cu2+QA-:RC is similar to that observed for the Fe2+QA-:RC complex (J0 = -0.43K). The exchange coupling is discussed in terms of the superexchange paths connecting the Cu2+ ion and the quinone radical using the structural data for the RCs of Rb. sphaeroides. From the value of the dipole-dipole interaction, d, we determined R approximately 8.4 A for the weighted distance between the metal ion and the quinone in reduced RCs, which is to be compared with 10 A obtained from x-ray analysis of unreduced RCs. This points to a shortening of the Cu2+ -QA- distance upon reduction of the quinone, as has been proposed by Allen et al. (1988).
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen J. P., Feher G., Yeates T. O., Komiya H., Rees D. C. Structure of the reaction center from Rhodobacter sphaeroides R-26: protein-cofactor (quinones and Fe2+) interactions. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8487–8491. doi: 10.1073/pnas.85.22.8487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen J. P., Feher G., Yeates T. O., Komiya H., Rees D. C. Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5730–5734. doi: 10.1073/pnas.84.16.5730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bunker G., Stern E. A., Blankenship R. E., Parson W. W. An x-ray absorption study of the iron site in bacterial photosynthetic reaction centers. Biophys J. 1982 Feb;37(2):539–551. doi: 10.1016/S0006-3495(82)84699-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butler W. F., Calvo R., Fredkin D. R., Isaacson R. A., Okamura M. Y., Feher G. The electronic structure of Fe2+ in reaction centers from Rhodopseudomonas sphaeroides. III. EPR measurements of the reduced acceptor complex. Biophys J. 1984 May;45(5):947–973. doi: 10.1016/S0006-3495(84)84241-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butler W. F., Johnston D. C., Shore H. B., Fredkin D. R., Okamura M. Y., Feher G. The electronic structure of Fe2+ in reaction centers from Rhodopseudomonas sphaeroides. I. Static magnetization measurements. Biophys J. 1980 Dec;32(3):967–992. doi: 10.1016/S0006-3495(80)85030-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debus R. J., Feher G., Okamura M. Y. Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26.1: characterization and reconstitution with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+. Biochemistry. 1986 Apr 22;25(8):2276–2287. doi: 10.1021/bi00356a064. [DOI] [PubMed] [Google Scholar]
- Dutton P. L., Leigh J. S., Jr, Reed D. W. Primary events in the photosynthetic reaction centre from Rhodopseudomonas spheroides strain R26: triplet and oxidized states of bacteriochlorophyll and the identification of the primary electron acceptor. Biochim Biophys Acta. 1973 Apr 5;292(3):654–664. doi: 10.1016/0005-2728(73)90013-3. [DOI] [PubMed] [Google Scholar]
- Eisenberger P., Okamura M. Y., Feher G. The electronic structure of Fe2+ in reaction centers from Rhodopseudomonas sphaeroides. II. Extended x-ray fine structure studies. Biophys J. 1982 Feb;37(2):523–538. doi: 10.1016/S0006-3495(82)84698-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feher G., Okamura M. Y., McElroy J. D. Identification of an electron acceptor in reaction centers of Rhodopseudomonas spheroides by EPR spectroscopy. Biochim Biophys Acta. 1972 Apr 20;267(1):222–226. doi: 10.1016/0005-2728(72)90155-7. [DOI] [PubMed] [Google Scholar]
- Feher G. Some chemical and physical properties of a bacterial reaction center particle and its primary photochemical reactants. Photochem Photobiol. 1971 Sep;14(3):373–387. doi: 10.1111/j.1751-1097.1971.tb06180.x. [DOI] [PubMed] [Google Scholar]
- Hyde J. S., Froncisz W. The role of microwave frequency in EPR spectroscopy of copper complexes. Annu Rev Biophys Bioeng. 1982;11:391–417. doi: 10.1146/annurev.bb.11.060182.002135. [DOI] [PubMed] [Google Scholar]
- Leigh J. S., Jr, Dutton P. L. The primary electron acceptor in photosynthesis. Biochem Biophys Res Commun. 1972 Jan 31;46(2):414–421. doi: 10.1016/s0006-291x(72)80154-2. [DOI] [PubMed] [Google Scholar]
- Lubitz W., Abresch E. C., Debus R. J., Isaacson R. A., Okamura M. Y., Feher G. Electron nuclear double resonance of semiquinones in reaction centers of Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1985 Aug 7;808(3):464–469. doi: 10.1016/0005-2728(85)90155-0. [DOI] [PubMed] [Google Scholar]
- Okamura M. Y., Isaacson R. A., Feher G. Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas spheroides. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3491–3495. doi: 10.1073/pnas.72.9.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Camp H. L., Sands R. H., Fee J. A. An examination of the cyanide derivative of bovine superoxide dismutase with electron-nuclear double resonance. Biochim Biophys Acta. 1982 May 21;704(1):75–89. doi: 10.1016/0167-4838(82)90134-0. [DOI] [PubMed] [Google Scholar]
