Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1990 Jul;58(1):253–259. doi: 10.1016/S0006-3495(90)82370-5

A stimulus-activated conductance in isolated taste epithelial membranes.

J H Teeter 1, J G Brand 1, T Kumazawa 1
PMCID: PMC1280957  PMID: 1696511

Abstract

Membrane vesicles isolated from the cutaneous taste epithelium of the catfish were incorporated into phospholipid bilayers on the tips of patch pipettes. Voltage-dependent conductances were observed in approximately 50% of the bilayers and single-channel currents having conductances from 8 to greater than 250 pS were recorded. In 40% of the bilayers displaying no voltage-dependent conductances, micromolar concentrations of L-arginine, a potent stimulus for one class of catfish amino acid taste receptors, activated a nonselective cation conductance. The L-arginine-gated conductance was concentration-dependent, showing half-maximal activation in response to approximately 15 microM L-arginine. L-Arginine-activated channels had unitary conductances of 40-50 pS and reversed between -6 and +18 mV with pseudointracellular solution in the pipette and Ringer in the bath. L-Alanine, a potent stimulus for the other major class of catfish amino acid taste receptors, did not alter bilayer conductance. D-Arginine, which is a relatively ineffective taste stimulus for catfish but a good cross-adapter of the L-arginine-induced neural response, had no effect on bilayer conductance at concentrations below 200 microM. However, increasing concentrations of D-arginine from 1 to 100 microM progressively suppressed the L-arginine-activated conductance, suggesting that D-arginine competed for the L-arginine receptor, but did not activate the associated cation channel. This interpretation is consonant with recent biochemical binding studies in this system. These results suggest that L-arginine taste receptor proteins in the catfish are part of or closely coupled to cation-selective channels which are opened by L-arginine binding.

Full text

PDF
253

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akabas M. H., Dodd J., Al-Awqati Q. A bitter substance induces a rise in intracellular calcium in a subpopulation of rat taste cells. Science. 1988 Nov 18;242(4881):1047–1050. doi: 10.1126/science.3194756. [DOI] [PubMed] [Google Scholar]
  2. Avenet P., Hofmann F., Lindemann B. Transduction in taste receptor cells requires cAMP-dependent protein kinase. Nature. 1988 Jan 28;331(6154):351–354. doi: 10.1038/331351a0. [DOI] [PubMed] [Google Scholar]
  3. Avenet P., Lindemann B. Amiloride-blockable sodium currents in isolated taste receptor cells. J Membr Biol. 1988 Nov;105(3):245–255. doi: 10.1007/BF01871001. [DOI] [PubMed] [Google Scholar]
  4. Brand J. G., Teeter J. H., Silver W. L. Inhibition by amiloride of chorda tympani responses evoked by monovalent salts. Brain Res. 1985 May 20;334(2):207–214. doi: 10.1016/0006-8993(85)90212-4. [DOI] [PubMed] [Google Scholar]
  5. Bruch R. C., Kalinoski D. L. Interaction of GTP-binding regulatory proteins with chemosensory receptors. J Biol Chem. 1987 Feb 15;262(5):2401–2404. [PubMed] [Google Scholar]
  6. Cagan R. H. Biochemical studies of taste sensation--XII. Specificity of binding of taste ligands to a sedimentable fraction from catfish taste tissue. Comp Biochem Physiol A Comp Physiol. 1986;85(2):355–358. doi: 10.1016/0300-9629(86)90262-8. [DOI] [PubMed] [Google Scholar]
  7. Cagan R. H., Boyle A. G. Biochemical studies of taste sensation. XI. Isolation, characterization and taste ligand binding activity of plasma membranes from catfish taste tissue. Biochim Biophys Acta. 1984 Jun 29;799(3):230–237. doi: 10.1016/0304-4165(84)90265-4. [DOI] [PubMed] [Google Scholar]
  8. Caprio J. High sensitivity of catfish taste receptors to amino acids. Comp Biochem Physiol A Comp Physiol. 1975 Sep 1;52(1):247–251. doi: 10.1016/s0300-9629(75)80160-5. [DOI] [PubMed] [Google Scholar]
  9. Coronado R., Latorre R. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys J. 1983 Aug;43(2):231–236. doi: 10.1016/S0006-3495(83)84343-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Desimone J. A., Heck G. L., Mierson S., Desimone S. K. The active ion transport properties of canine lingual epithelia in vitro. Implications for gustatory transduction. J Gen Physiol. 1984 May;83(5):633–656. doi: 10.1085/jgp.83.5.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldstein N. I., Cagan R. H. Biochemical studies of taste sensation: monoclonal antibody against L-alanine binding activity of catfish taste epithelium. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7595–7597. doi: 10.1073/pnas.79.23.7595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heck G. L., Mierson S., DeSimone J. A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science. 1984 Jan 27;223(4634):403–405. doi: 10.1126/science.6691151. [DOI] [PubMed] [Google Scholar]
  13. Kalinoski D. L., Bryant B. P., Shaulsky G., Brand J. G., Harpaz S. Specific L-arginine taste receptor sites in the catfish, Ictalurus punctatus: biochemical and neurophysiological characterization. Brain Res. 1989 May 29;488(1-2):163–173. doi: 10.1016/0006-8993(89)90705-1. [DOI] [PubMed] [Google Scholar]
  14. Kinnamon S. C., Dionne V. E., Beam K. G. Apical localization of K+ channels in taste cells provides the basis for sour taste transduction. Proc Natl Acad Sci U S A. 1988 Sep;85(18):7023–7027. doi: 10.1073/pnas.85.18.7023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kinnamon S. C., Roper S. D. Membrane properties of isolated mudpuppy taste cells. J Gen Physiol. 1988 Mar;91(3):351–371. doi: 10.1085/jgp.91.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kinnamon S. C. Taste transduction: a diversity of mechanisms. Trends Neurosci. 1988 Nov;11(11):491–496. doi: 10.1016/0166-2236(88)90010-0. [DOI] [PubMed] [Google Scholar]
  17. Krueger J. M., Cagan R. H. Biochemical studies of tast sensation. Binding of L-[3H]alanine to a sedimentable fraction from catfish barbel epithelium. J Biol Chem. 1976 Jan 10;251(1):88–97. [PubMed] [Google Scholar]
  18. Roper S. D., McBride D. W., Jr Distribution of ion channels on taste cells and its relationship to chemosensory transduction. J Membr Biol. 1989 Jul;109(1):29–39. doi: 10.1007/BF01870788. [DOI] [PubMed] [Google Scholar]
  19. Schiffman S. S., Lockhead E., Maes F. W. Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6136–6140. doi: 10.1073/pnas.80.19.6136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Striem B. J., Pace U., Zehavi U., Naim M., Lancet D. Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. Biochem J. 1989 May 15;260(1):121–126. doi: 10.1042/bj2600121. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES