Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1990 Aug;58(2):289–297. doi: 10.1016/S0006-3495(90)82376-6

Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps.

W F Wonderlin 1, A Finkel 1, R J French 1
PMCID: PMC1280971  PMID: 1698470

Abstract

We describe two enhancements of the planar bilayer recording method which enable low-noise recordings of single-channel currents activated by voltage steps in planar bilayers formed on apertures in partitions separating two open chambers. First, we have refined a simple and effective procedure for making small bilayer apertures (25-80 micrograms diam) in plastic cups. These apertures combine the favorable properties of very thin edges, good mechanical strength, and low stray capacitance. In addition to enabling formation of small, low-capacitance bilayers, this aperture design also minimizes the access resistance to the bilayer, thereby improving the low-noise performance. Second, we have used a patch-clamp headstage modified to provide logic-controlled switching between a high-gain (50 G omega) feedback resistor for high-resolution recording and a low-gain (50 M omega) feedback resistor for rapid charging of the bilayer capacitance. The gain is switched from high to low before a voltage step and then back to high gain 25 microseconds after the step. With digital subtraction of the residual currents produced by the gain switching and electrostrictive changes in bilayer capacitance, we can achieve a steady current baseline within 1 ms after the voltage step. These enhancements broaden the range of experimental applications for the planar bilayer method by combining the high resolution previously attained only with small bilayers formed on pipette tips with the flexibility of experimental design possible with planar bilayers in open chambers. We illustrate application of these methods with recordings of the voltage-step activation of a voltage-gated potassium channel.

Full text

PDF
289

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys J. 1983 Feb;41(2):119–133. doi: 10.1016/S0006-3495(83)84414-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bean R. C., Shepherd W. C., Chan H., Eichner J. Discrete conductance fluctuations in lipid bilayer protein membranes. J Gen Physiol. 1969 Jun;53(6):741–757. doi: 10.1085/jgp.53.6.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coronado R., Latorre R. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys J. 1983 Aug;43(2):231–236. doi: 10.1016/S0006-3495(83)84343-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Green W. N., Weiss L. B., Andersen O. S. Batrachotoxin-modified sodium channels in planar lipid bilayers. Ion permeation and block. J Gen Physiol. 1987 Jun;89(6):841–872. doi: 10.1085/jgp.89.6.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hall J. E. Access resistance of a small circular pore. J Gen Physiol. 1975 Oct;66(4):531–532. doi: 10.1085/jgp.66.4.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  7. Hartshorne R. P., Keller B. U., Talvenheimo J. A., Catterall W. A., Montal M. Functional reconstitution of the purified brain sodium channel in planar lipid bilayers. Proc Natl Acad Sci U S A. 1985 Jan;82(1):240–244. doi: 10.1073/pnas.82.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heinemann S. H., Sigworth F. J. Estimation of Na+ dwell time in the gramicidin A channel. Na+ ions as blockers of H+ currents. Biochim Biophys Acta. 1989 Dec 11;987(1):8–14. doi: 10.1016/0005-2736(89)90448-3. [DOI] [PubMed] [Google Scholar]
  9. Mueller P. Membrane excitation through voltage-induced aggregation of channel precursors. Ann N Y Acad Sci. 1975 Dec 30;264:247–264. doi: 10.1111/j.1749-6632.1975.tb31487.x. [DOI] [PubMed] [Google Scholar]
  10. Neher E., Sandblom J., Eisenman G. Ionic selectivity, saturation, and block in gramicidin A channels. II. Saturation behavior of single channel conductances and evidence for the existence of multiple binding sites in the channel. J Membr Biol. 1978 Apr 26;40(2):97–116. doi: 10.1007/BF01871143. [DOI] [PubMed] [Google Scholar]
  11. Niles W. D., Cohen F. S. Video fluorescence microscopy studies of phospholipid vesicle fusion with a planar phospholipid membrane. Nature of membrane-membrane interactions and detection of release of contents. J Gen Physiol. 1987 Nov;90(5):703–735. doi: 10.1085/jgp.90.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rosenberg R. L., Hess P., Tsien R. W. Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membrane potentials. J Gen Physiol. 1988 Jul;92(1):27–54. doi: 10.1085/jgp.92.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sigworth F. J., Urry D. W., Prasad K. U. Open channel noise. III. High-resolution recordings show rapid current fluctuations in gramicidin A and four chemical analogues. Biophys J. 1987 Dec;52(6):1055–1064. doi: 10.1016/S0006-3495(87)83299-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. White S. H. Analysis of the torus surrounding planar lipid bilayer membranes. Biophys J. 1972 Apr;12(4):432–445. doi: 10.1016/S0006-3495(72)86095-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES