Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1990 Aug;58(2):319–332. doi: 10.1016/S0006-3495(90)82379-1

Cytoplasmic strains and strain rates in motile polymorphonuclear leukocytes.

S I Simon 1, G W Schmid-Schönbein 1
PMCID: PMC1280974  PMID: 2207240

Abstract

A new method is presented to measure local cytoplasmic deformation and rate of deformation in motile active neutrophils. The deformation is expressed in terms of biomechanical strains and strain rates. For this purpose small phagocytosed latex microspheres were used as intracellular markers. Planar Lagrangian and Eulerian strains and the rate of strain were estimated from the positions of a triad of internalized markers. Principal strains, stretch ratios, and principal directions were computed. The intracellular strains were found to be large relative to the overall cell shape change. Principal cytoplasmic stretch ratios showed large extension in the direction of pseudopod formation and cell locomotion and contraction in perpendicular directions. Regional strain analysis showed contractile strains to predominate in the vicinity of the pseudopod or leading edge of motion. The transitional region between the pseudopod and the main cell body exhibited large shear strains. The posterior region, where the uropod is located, also revealed large extensions but small contractile strains. The rate of strains are relatively small, nonuniform in time, and largely independent of the strain. The method we propose to measure cytoplasmic strain can be applied to a variety of problems in cell mechanics.

Full text

PDF
319

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berlin R. D., Oliver J. M. Analogous ultrastructure and surface properties during capping and phagocytosis in leukocytes. J Cell Biol. 1978 Jun;77(3):789–804. doi: 10.1083/jcb.77.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davis B. H., Walter R. J., Pearson C. B., Becker E. L., Oliver J. M. Membrane activity and topography of F-Met-Leu-Phe-Treated polymorphonuclear leukocytes. Acute and sustained responses to chemotactic peptide. Am J Pathol. 1982 Aug;108(2):206–216. [PMC free article] [PubMed] [Google Scholar]
  3. Evans E., Kukan B. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood. 1984 Nov;64(5):1028–1035. [PubMed] [Google Scholar]
  4. Fujiwara K., Pollard T. D. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol. 1976 Dec;71(3):848–875. doi: 10.1083/jcb.71.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
  6. Malech H. L., Root R. K., Gallin J. I. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis. J Cell Biol. 1977 Dec;75(3):666–693. doi: 10.1083/jcb.75.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schmid-Schönbein G. W., Skalak R. Continuum mechanical model of leukocytes during protopod formation. J Biomech Eng. 1984 Feb;106(1):10–18. doi: 10.1115/1.3138448. [DOI] [PubMed] [Google Scholar]
  8. Schmid-Schönbein G. W., Sung K. L., Tözeren H., Skalak R., Chien S. Passive mechanical properties of human leukocytes. Biophys J. 1981 Oct;36(1):243–256. doi: 10.1016/S0006-3495(81)84726-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Senda N., Shibata N., Tatsumi N., Kondo K., Hamada K. A contractile protein from leucocytes. Its extraction and some of its properties. Biochim Biophys Acta. 1969 May;181(1):191–200. doi: 10.1016/0005-2795(69)90241-4. [DOI] [PubMed] [Google Scholar]
  10. Shields J. M., Haston W. S. Behaviour of neutrophil leucocytes in uniform concentrations of chemotactic factors: contraction waves, cell polarity and persistence. J Cell Sci. 1985 Mar;74:75–93. doi: 10.1242/jcs.74.1.75. [DOI] [PubMed] [Google Scholar]
  11. Simon S. I., Schmid-Schönbein G. W. Biophysical aspects of microsphere engulfment by human neutrophils. Biophys J. 1988 Feb;53(2):163–173. doi: 10.1016/S0006-3495(88)83078-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stossel T. P., Hartwig J. H. Interactions of actin, myosin, and a new actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J Cell Biol. 1976 Mar;68(3):602–619. doi: 10.1083/jcb.68.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sullivan J. A., Mandell G. L. Motility of human polymorphonuclear neutrophils: microscopic analysis of substrate adhesion and distribution of F-actin. Cell Motil. 1983;3(1):31–46. doi: 10.1002/cm.970030104. [DOI] [PubMed] [Google Scholar]
  14. Taylor D. L., Condeelis J. S. Cytoplasmic structure and contractility in amoeboid cells. Int Rev Cytol. 1979;56:57–144. doi: 10.1016/s0074-7696(08)61821-5. [DOI] [PubMed] [Google Scholar]
  15. Valerius N. H., Stendahl O., Hartwig J. H., Stossel T. P. Distribution of actin-binding protein and myosin in polymorphonuclear leukocytes during locomotion and phagocytosis. Cell. 1981 Apr;24(1):195–202. doi: 10.1016/0092-8674(81)90515-8. [DOI] [PubMed] [Google Scholar]
  16. Zhu C., Skalak R. A continuum model of protrusion of pseudopod in leukocytes. Biophys J. 1988 Dec;54(6):1115–1137. doi: 10.1016/S0006-3495(88)83047-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zhu C., Skalak R., Schmid-Schönbein G. W. One-dimensional steady continuum model of retraction of pseudopod in leukocytes. J Biomech Eng. 1989 Feb;111(1):69–77. doi: 10.1115/1.3168342. [DOI] [PubMed] [Google Scholar]
  18. Zigmond S. H. Chemotaxis by polymorphonuclear leukocytes. J Cell Biol. 1978 May;77(2):269–287. doi: 10.1083/jcb.77.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES