Abstract
We have measured the forward and reverse rates of the allosteric transition between R (relaxed) and T (tense) quaternary structures for oxyhemoglobin A from which a single oxygen molecule was removed in pH 7, phosphate buffer, using the method of modulated excitation (Ferrone, F.A., and J.J. Hopfield. 1976. Proc. Natl. Acad. Sci. USA. 73:4497-4501 and Ferrone, F.A., A.J. Martino, and S. Basak. 1985. Biophys. J. 48:269-282). Despite the low quantum yield, which necessitated large light levels and an associated temperature rise, the data was of superior quality to the equivalent experiment with CO as a ligand, permitting comparison between the allosteric behavior of hemoglobin with different ligands. Qualitatively, the T structure is favored more strongly in triligated oxyhemoglobin than triligated carboxyhemoglobin. The rates for the allosteric transition with oxygen bound were essentially temperature independent, whereas for CO both the R----T and T----R rates increased with temperature, having an activation energy of 2.2 and 2.8 kcal, respectively. The R----T rate was higher for O2 than for CO being 3 x 10(3) s-1 vs. 1.6 x 10(3) s-1 for HbCO at 25 degrees C. The T----R rate for HbO2 was only 2 x 10(3) s-1, vs 4.2 x 10(3) s-1 for HbCO, giving an equilibrium constant between the structures greater than unity (L3 = 1.5). The data suggest that there may be some allosteric inequality between the subunits, but do not require (or rule out) ligand binding heterogeneity. The ligand-dependent differences are compatible with stereochemical studies of HbCO and HbO2. However,the large population of T species with three oxygen molecules bound is much greater than predicted by precision equilibrium studies and a generalized Szabo-Karplus model (Lee, A. W., M. Karplus, C. Poyart, and E. Bursaux. 1988. Biochemistry.27:1285-1301) or by the allosteric model of DiCera (Di Cera, E., C. H. Robert, and S. J. Gill. 1987. Biochemistry.26:4003-4008).
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackers G. K., Smith F. R. The hemoglobin tetramer: a three-state molecular switch for control of ligand affinity. Annu Rev Biophys Biophys Chem. 1987;16:583–609. doi: 10.1146/annurev.bb.16.060187.003055. [DOI] [PubMed] [Google Scholar]
- Baldwin J. M. The structure of human carbonmonoxy haemoglobin at 2.7 A resolution. J Mol Biol. 1980 Jan 15;136(2):103–128. doi: 10.1016/0022-2836(80)90308-3. [DOI] [PubMed] [Google Scholar]
- Brunori M., Giacometti G. M. Photochemistry of hemoproteins. Methods Enzymol. 1981;76:582–595. doi: 10.1016/0076-6879(81)76146-9. [DOI] [PubMed] [Google Scholar]
- Case D. A., Karplus M. Stereochemistry of carbon monoxide binding to myoglobin and hemoglobin. J Mol Biol. 1978 Aug 25;123(4):697–701. doi: 10.1016/0022-2836(78)90214-0. [DOI] [PubMed] [Google Scholar]
- Di Cera E., Doyle M. L., Connelly P. R., Gill S. J. Carbon monoxide binding to human hemoglobin A0. Biochemistry. 1987 Oct 6;26(20):6494–6502. doi: 10.1021/bi00394a031. [DOI] [PubMed] [Google Scholar]
- Di Cera E., Robert C. H., Gill S. J. Allosteric interpretation of the oxygen-binding reaction of human hemoglobin tetramers. Biochemistry. 1987 Jun 30;26(13):4003–4008. doi: 10.1021/bi00387a039. [DOI] [PubMed] [Google Scholar]
- Ferrone F. A., Hofrichter J., Eaton W. A. Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques. J Mol Biol. 1985 Jun 25;183(4):591–610. doi: 10.1016/0022-2836(85)90174-3. [DOI] [PubMed] [Google Scholar]
- Ferrone F. A., Hopfield J. J. Rate of quaternary structure change in hemoglobin measured by modulated excitation. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4497–4501. doi: 10.1073/pnas.73.12.4497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrone F. A., Martino A. J., Basak S. Conformational kinetics of triligated hemoglobin. Biophys J. 1985 Aug;48(2):269–282. doi: 10.1016/S0006-3495(85)83780-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gelin B. R., Lee A. W., Karplus M. Hemoglobin tertiary structural change on ligand binding. Its role in the co-operative mechanism. J Mol Biol. 1983 Dec 25;171(4):489–559. doi: 10.1016/0022-2836(83)90042-6. [DOI] [PubMed] [Google Scholar]
- Heidner E. J., Ladner R. C., Perutz M. F. Structure of horse carbonmonoxyhaemoglobin. J Mol Biol. 1976 Jul 5;104(3):707–722. doi: 10.1016/0022-2836(76)90130-3. [DOI] [PubMed] [Google Scholar]
- Hopfield J. J., Shulman R. G., Ogawa S. An allosteric model of hemoglobin. I. Kinetics. J Mol Biol. 1971 Oct 28;61(2):425–443. doi: 10.1016/0022-2836(71)90391-3. [DOI] [PubMed] [Google Scholar]
- Johnson M. L., Turner B. W., Ackers G. K. A quantitative model for the cooperative mechanism of human hemoglobin. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1093–1097. doi: 10.1073/pnas.81.4.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee A. W., Karplus M., Poyart C., Bursaux E. Analysis of proton release in oxygen binding by hemoglobin: implications for the cooperative mechanism. Biochemistry. 1988 Feb 23;27(4):1285–1301. doi: 10.1021/bi00404a031. [DOI] [PubMed] [Google Scholar]
- Lee A. W., Karplus M. Structure-specific model of hemoglobin cooperativity. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7055–7059. doi: 10.1073/pnas.80.23.7055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Marden M. C., Kister J., Poyart C., Edelstein S. J. Analysis of hemoglobin oxygen equilibrium curves. Are unique solutions possible? J Mol Biol. 1989 Jul 20;208(2):341–345. doi: 10.1016/0022-2836(89)90393-8. [DOI] [PubMed] [Google Scholar]
- Martino A. J., Ferrone F. A. Rate of allosteric change in hemoglobin measured by modulated excitation using fluorescence detection. Biophys J. 1989 Oct;56(4):781–794. doi: 10.1016/S0006-3495(89)82725-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCray J. A. Oxygen recombination kinetics following laser photolysis of oxyhemoglobin. Biochem Biophys Res Commun. 1972 Apr 14;47(1):187–193. doi: 10.1016/s0006-291x(72)80027-5. [DOI] [PubMed] [Google Scholar]
- Morris R. J., Gibson Q. H. The apparent quantum yield of T-state human hemoglobin. Contribution of protein and heme to rates of oxygen reactions. J Biol Chem. 1984 Jan 10;259(1):365–371. [PubMed] [Google Scholar]
- Murray L. P., Hofrichter J., Henry E. R., Eaton W. A. Time-resolved optical spectroscopy and structural dynamics following photodissociation of carbonmonoxyhemoglobin. Biophys Chem. 1988 Feb;29(1-2):63–76. doi: 10.1016/0301-4622(88)87025-x. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
- Sawicki C. A., Gibson Q. H. Properties of the T state of human oxyhemoglobin studies by laser photolysis. J Biol Chem. 1977 Nov 10;252(21):7538–7547. [PubMed] [Google Scholar]
- Sawicki C. A., Gibson Q. H. Quaternary conformational changes in human hemoglobin studied by laser photolysis of carboxyhemoglobin. J Biol Chem. 1976 Mar 25;251(6):1533–1542. [PubMed] [Google Scholar]
- Sawicki C. A., Gibson Q. H. Quaternary conformational changes in human oxyhemoglobin studied by laser photolysis. J Biol Chem. 1977 Aug 25;252(16):5783–5788. [PubMed] [Google Scholar]
- Shulman R. G., Hopfield J. J., Ogawa S. Allosteric interpretation of haemoglobin properties. Q Rev Biophys. 1975 Jul;8(3):325–420. doi: 10.1017/s0033583500001840. [DOI] [PubMed] [Google Scholar]
- Szabo A., Karplus M. A mathematical model for structure-function relations in hemoglobin. J Mol Biol. 1972 Dec 14;72(1):163–197. doi: 10.1016/0022-2836(72)90077-0. [DOI] [PubMed] [Google Scholar]
- The Bohr effect and combination with organic phosphates. Nature. 1970 Nov 21;228(5273):734–739. doi: 10.1038/228734a0. [DOI] [PubMed] [Google Scholar]
