Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1990 Sep;58(3):631–639. doi: 10.1016/S0006-3495(90)82406-1

Exact solution of a model of diffusion in an infinite chain or monolayer of cells coupled by gap junctions.

S V Ramanan 1, P R Brink 1
PMCID: PMC1281004  PMID: 2207255

Abstract

Analytic solutions are found for an infinite chain of cells coupled by gap junctions under two initial conditions: (a) One inner cell initially filled uniformly to a fixed concentration and (b) inner cell maintained indefinitely at constant concentration. The solution can be extended by the product method (Carslaw and Jaeger. 1959. Conduction of Heat in Solids. Oxford University Press.) to monolayers. We can also incorporate leakage through the plasma membrane by the product method. We demonstrate the utility of these results by fitting diffusion data from the septate axon of earthworm and by plots of theoretical profiles from monolayers of cells. Use of these analytic solutions enables one to overcome the limitations of methods that lump the effects of cytoplasmic diffusion and junctional permeability into an effective diffusion coefficient.

Full text

PDF
631

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biegon R. P., Atkinson M. M., Liu T. F., Kam E. Y., Sheridan J. D. Permeance of Novikoff hepatoma gap junctions: quantitative video analysis of dye transfer. J Membr Biol. 1987;96(3):225–233. doi: 10.1007/BF01869304. [DOI] [PubMed] [Google Scholar]
  2. Brink P. R., Ramanan S. V. A model for the diffusion of fluorescent probes in the septate giant axon of earthworm. Axoplasmic diffusion and junctional membrane permeability. Biophys J. 1985 Aug;48(2):299–309. doi: 10.1016/S0006-3495(85)83783-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cole W. C., Garfield R. E., Kirkaldy J. S. Gap junctions and direct intercellular communication between rat uterine smooth muscle cells. Am J Physiol. 1985 Jul;249(1 Pt 1):C20–C31. doi: 10.1152/ajpcell.1985.249.1.C20. [DOI] [PubMed] [Google Scholar]
  4. Kensler R. W., Brink P. R., Dewey M. M. The septum of the lateral axon of the earthworm: a thin section and freeze-fracture study. J Neurocytol. 1979 Oct;8(5):565–590. doi: 10.1007/BF01208510. [DOI] [PubMed] [Google Scholar]
  5. Loewenstein W. R. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981 Oct;61(4):829–913. doi: 10.1152/physrev.1981.61.4.829. [DOI] [PubMed] [Google Scholar]
  6. Rae J. L., Lewno A. W., Cooper K., Gates P. Dye and electrical coupling between cells of the rabbit corneal endothelium. Curr Eye Res. 1989 Aug;8(8):859–869. doi: 10.3109/02713688909000876. [DOI] [PubMed] [Google Scholar]
  7. Safranyos R. G., Caveney S. Rates of diffusion of fluorescent molecules via cell-to-cell membrane channels in a developing tissue. J Cell Biol. 1985 Mar;100(3):736–747. doi: 10.1083/jcb.100.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Weidmann S. The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle. J Physiol. 1966 Nov;187(2):323–342. doi: 10.1113/jphysiol.1966.sp008092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Weingart R. The permeability to tetraethylammonium ions of the surface membrane and the intercalated disks of sheep and calf myocardium. J Physiol. 1974 Aug;240(3):741–762. doi: 10.1113/jphysiol.1974.sp010632. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES