Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Nov 11;81(Pt 12):1131–1135. doi: 10.1107/S2056989025009533

Crystal structures of two isomers of 1-(naphthalen-1-yl)ethanol

Christopher Golz a,*
Editor: A S Batsanovb
PMCID: PMC12810262  PMID: 41551392

Crystal structures, Hirshfeld surfaces and energy lattices of (S)-1-(naphthalen-1-yl)ethanol (1) and (R)-1-(naphthalen-2-yl)ethanol (2), both C12H12O, were studied to understand much lower crystallization propensity of the latter. The study provides new insights into the supra­molecular inter­actions and crystal packing of regioisomeric naphthalenyl-ethanol compounds, which may have implications for the design of new materials with tailored properties.

Keywords: crystal structure, hydrogen bonding, π–π-inter­actions, Hirshfeld surfaces, energy lattice

Abstract

Crystal structures, Hirshfeld surfaces and energy lattices of (S)-1-(naphthalen-1-yl)ethanol (1) and (R)-1-(naphthalen-2-yl)ethanol (2), both C12H12O, were studied to understand much the lower crystallization propensity of the latter. In both structures, mol­ecules are linked by strong hydrogen bonds into helical chains where Coulombic inter­actions expectedly dominate, but dispersive inter­actions of 1 and 2 differ significantly, resulting in large gaps in the total energy lattice of 2. The poor crystallization and and higher Z′ (4 vs 2 in structure 1) of 2 can be explained by frustration between supra­molecular synthons (⋯O—H⋯O—H⋯ hydrogen-bonding chain vs π–π- inter­actions between naphthalene moieties). The study provides new insights into the supra­molecular inter­actions and crystal packing of regioisomeric naphthalenyl-ethanol compounds, which may have implications for the design of new materials with tailored properties.

1. Chemical context

1 and 2 are chiral aromatic alcohols, mutually regioisomeric and differing by the attachment position of the ethanol moiety to the naphthalene group. Such rather simple monoalcohols are inter­esting objects to explore certain packing principles and are often discussed in this connection; monoalcohols specifically appear to behave in a rather systematic way governed by (i) the propensity to form strongly directional hydrogen bonds that link OH groups in chains or rings and (ii) the sterical bulkiness of the organic residue (Brock & Duncan, 1994). This also leads to frequent occurrence of Z′>1 and extensive polymorphism (Steed & Steed, 2015; Taylor et al., 2016). One common approach is to group certain inter­actions into supra­molecular synthons, which prefer definite relative orientations (Anderson et al., 2008). It is further suggested that, in cases where the synthons are not acting synergistically, structural frustration is building up leading to the formation of high-Z′ structures. For the alcohols studied here, the synthons are the hydrogen bonding between hy­droxy groups and the π–π-inter­actions between naphthalene groups. To explain the contrasting crystallization behavior, with 1 forming very readily sizable single crystals while 2 only reluctantly crystallizing at all, the single crystal structures of both were determined and compared.1.

2. Structural commentary

Alcohol 1 crystallizes in the ortho­rhom­bic space group P212121 with two independent mol­ecules in the asymmetric unit, while 2 crystallizes in monoclinic P21 with four independent mol­ecules (see Fig. 1). The independent mol­ecules differ mainly in the conformation of the ethanol group (see the mol­ecular overlay in Fig. 2). For 1 the difference is limited to a ca. 20° rotation around the C2—C3 bond. In structure 2, mol­ecules B and D have their hy­droxy group O—H bond oriented roughly in the plane of the naphthalene moiety, while in mol­ecules A and C it is oriented almost perpendicularly to this plane, with consequences for the packing (see Section 3).

Figure 1.

Figure 1

Mol­ecular structures and atom-numbering schemes of alcohols 1 (top) and 2 (bottom), showing a full asymmetric unit for either. Independent mol­ecules label carry the suffix A to D, respectively. Atomic displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

Overlay of the independent mol­ecules of 1 (top) and 2 (bottom) in which the naphthalene moieties were aligned. Mol­ecules A are shown in red, B in blue, C in orange and D in magenta.

3. Supra­molecular features

At first glance, both alcohols form apparently similar columns of mol­ecules with a central hydrogen-bonding chain following a helical motif that can be described by a pseudo-41 screw (see Fig. 3). Two differences become notable at closer inspection. Firstly, the naphthalene groups are arranged differently. In 1, their orientations approximately follow the same pseudo-41 motif, while in 2 they do not. Instead, the naphthalene and methyl groups each are arranged on opposite faces of the formed column. Secondly, the hydrogen bonds vary in length (defined as the donor-acceptor O⋯O distance) differently in both structures. In 1, it is alternating between one short and one long hydrogen bond (Table 1) while in 2, there are three longer hydrogen bonds, followed by one particularly short one of 2.665 (2) Å (Table 2).

Figure 3.

Figure 3

Packing diagrams for 1 and 2, showing the hydrogen-bond chain motif.

Table 1. Hydrogen-bond geometry (Å, °) for 1.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O1Bi 0.85 (2) 1.84 (2) 2.6849 (15) 172 (2)
O1B—H1B⋯O1A 0.85 (2) 1.89 (2) 2.7119 (14) 165 (2)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for 2.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O1Di 0.86 (3) 1.94 (3) 2.7890 (18) 171 (2)
O1B—H1B⋯O1A 0.84 (3) 1.95 (3) 2.761 (2) 162 (3)
O1C—H1C⋯O1B 0.91 (3) 1.76 (3) 2.6648 (18) 177 (2)
O1D—H1D⋯O1C 0.87 (3) 1.93 (3) 2.7747 (18) 163 (2)

Symmetry code: (i) Inline graphic.

3.1. Hirshfeld surface and energy lattice analysis

To better understand how the mol­ecules inter­act within the columns, the corresponding Hirshfeld surfaces were computed with CrystalExplorer21 and analyzed (Spackman et al., 2021). The most prominent red spot on the Hirshfeld surface is clearly indicating the hydrogen bond between the adjacent hy­droxy groups, and the fingerprint plot shows the corresponding sharp spike (marked ‘a’ in Fig. 4). An inter­esting feature in 1 is the peripheral spike of H⋯C contacts (marked ‘b’ in Fig. 4), which indicates C—H⋯π inter­actions. This feature is not symmetrically present for both independent mol­ecules of 1, indicating that some of the close C—H⋯π inter­actions occur between two A mol­ecules when they are symmetric contacts, and between A and B when they are not symmetric, whereas mol­ecule B acts mostly as an acceptor. Upon further inspection of these contacts, they appear as inter-column edge-to-face inter­actions (Martinez & Iverson, 2012).

Figure 4.

Figure 4

Hirshfeld surface and fingerprint plots for 1 and 2. Red letters indicate close inter­actions H⋯O (a), H⋯C (b) and H⋯H (c).

Further insight into the relative strength of these inter­actions can be obtained from comparison of the energy lattices (Mackenzie et al., 2017), see Fig. 5. In both structures, the Coulombic inter­actions are clearly dominating along the hydrogen-bonding direction (Table 3), replicating the helical column structure discussed above. In terms of absolute energy, these are also the strongest inter­actions. A noticeable difference becomes visible when the dispersive inter­actions are scrutinized. Although weaker in absolute strength than the electrostatics, they are more numerous because they connect the columns. The dispersive intra-column inter­actions, following the hydrogen bonding, are on a similar scale as the inter-column ones. Inter­estingly, the inter­actions add up differently: noticeable gaps are present in the energy framework of 2, which is not the case in 1. This might indicate the aforementioned frustration between supra­molecular synthons in 2 (Anderson et al., 2008) and serve to explain the higher Z′ and lower observed crystallization propensity.

Figure 5.

Figure 5

Calculated energy lattices (CE-B3LYP) for 1 and 2, viewed perpendicular to (leftmost figures) and down the propagation axes of the pseudo 41-screw. Coulombic inter­actions are represented by red tubes, dispersive inter­actions by green and total energy by blue ones. The tube scale is set to 150 and the cut-off for weak inter­actions is set to 10 kJ mol−1.

Table 3. Calculated inter­action energies (kJ mol−1) between hydrogen-bonded mol­ecules.

Comp Path E ele E pol E dis E rep E tot
1 ABi −50.8 −10.9 −24.8 72.3 −38.7
1 BA −45.3 −10.6 −33.9 69.9 −42.0
2 ADii −47.3 −10.4 −41.2 69.5 −50.6
2 BA −43.1 −9.5 −19.8 55.4 −35.6
2 CB −61.0 −13.5 −37.7 88.2 −52.8
2 DC −40.6 −8.8 −21.2 54.5 −34.2

Symmetry codes: (i) x + Inline graphic, −y + Inline graphic, −z + 1, (ii) x, y − 1, z.

4. Database survey

Several related arenyl methanols can be found in the Cambridge Crystallographic Database (CSD ver. 5.43; Groom et al., 2016), all featuring the hydrogen-bond chain motif. In phenanthren-4-yl-methanol (FUGZAI; Gerkin, 2000), a very similar packing arrangement is found as in 1 and 2, but in a more ideal realization with Z′ = 1 in space group I41/a. Herein, the hydrogen bond column is following a perfect 41 screw symmetry. On the other hand, the organization of the hydrogen bond column appears to be more distorted when the π-system is enlarged: in anthracen-9-yl-methanol (VAFMUK; Sweeting & Rheingold, 1988; Islor et al., 2013) the packing features columns that are not following any screw but a glide operation. In pyren-1-yl-methanol (DUPBAS; Gruber et al., 2010; Morales-Espinoza et al., 2011) the mol­ecules appear to favor the formation of discrete π-stacked dimers, that further stretches the pseudo-41 screw motif along the propagation direction. This is notable when comparing the period lengths, involving four mol­ecules per 360° rotation of the helix, viz. 6.03 Å in 2, 7.75 Å in 1, 8.30 Å in FUGZAI and 8.86 Å DUPBAS.

Furthermore, the racemic structure of 2 is known (TAZTAQ; Staples & George, 2005); it contains discrete centrosymmetric tetra­mers rather than helical columns. The mol­ecular volumes of racemic and enanti­opure structures of 2 are 230.6 Å3 (193 K) versus 233.6 Å3 (100 K), respectively. The former is more dense and thus in accordance with Wallach’s rule (Brock et al., 1991).

5. Synthesis and crystallization

Compounds 1 and 2 were both purchased from BLD Pharmatech GmbH. 1 was received as crystalline material from which suitable single crystals could be taken without further recrystallization. 2 was received as semi-amorphous solid and its recrystallization from various organic solvents yielded finely fibrous material. Single crystals of 2 suitable for diffraction experiments were grown from a solution in ethanol/water over the course of one week.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. C-bound H atoms were placed geometrically and treated as riding atoms, with C—H = 0.95 Å (aromatic), 0.98 Å (meth­yl), and 1.00 Å (tert-C). Uiso(H) was set to 1.5Ueq(C) for methyl hydrogen atoms and 1.2Ueq(C) otherwise. The positions of hydroxyl H atoms were refined freely, while Uiso(H) were set to 1.5Ueq(O).

Table 4. Experimental details.

  1 2
Crystal data
Chemical formula C12H12O C12H12O
M r 172.22 172.22
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21
Temperature (K) 100 100
a, b, c (Å) 7.7519 (7), 12.9750 (12), 18.794 (3) 17.3408 (5), 6.0327 (2), 19.1125 (5)
α, β, γ (°) 90, 90, 90 90, 110.821 (1), 90
V3) 1890.3 (4) 1868.82 (10)
Z 8 8
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.59 0.60
Crystal size (mm) 0.41 × 0.39 × 0.23 0.56 × 0.05 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE dual wavelength Mo/Cu Bruker D8 VENTURE dual wavelength Mo/Cu
Absorption correction Numerical (SADABS; Krause et al., 2015) Numerical (SADABS; Krause et al., 2015)
Tmin, Tmax 0.771, 0.982 0.355, 0.473
No. of measured, independent and observed [I > 2σ(I)] reflections 63841, 4063, 4058 70639, 7878, 7515
R int 0.040 0.051
(sin θ/λ)max−1) 0.637 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.04 0.035, 0.096, 1.03
No. of reflections 4063 7878
No. of parameters 244 486
No. of restraints 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.12 0.19, −0.16
Absolute structure Flack x determined using 1715 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013) Flack x determined using 3213 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter 0.04 (4) 0.00 (15)

Computer programs: APEX6 (Bruker, 2024), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989025009533/zv2039sup1.cif

e-81-01131-sup1.cif (4.3MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989025009533/zv20391sup2.hkl

e-81-01131-1sup2.hkl (323.9KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989025009533/zv20392sup3.hkl

e-81-01131-2sup3.hkl (625.5KB, hkl)
e-81-01131-1sup4.cml (3.8KB, cml)

Supporting information file. DOI: 10.1107/S2056989025009533/zv20391sup4.cml

e-81-01131-2sup5.cml (3.8KB, cml)

Supporting information file. DOI: 10.1107/S2056989025009533/zv20392sup5.cml

CCDC references: 2498864, 2498863

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

(S)-1-(Naphthalen-1-yl)ethanol (1) . Crystal data

C12H12O Dx = 1.210 Mg m3
Mr = 172.22 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121 Cell parameters from 9660 reflections
a = 7.7519 (7) Å θ = 5.8–78.9°
b = 12.9750 (12) Å µ = 0.59 mm1
c = 18.794 (3) Å T = 100 K
V = 1890.3 (4) Å3 Block, colourless
Z = 8 0.41 × 0.39 × 0.23 mm
F(000) = 736

(S)-1-(Naphthalen-1-yl)ethanol (1) . Data collection

Bruker D8 VENTURE dual wavelength Mo/Cu diffractometer 4063 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs 4058 reflections with I > 2σ(I)
Mirror optics monochromator Rint = 0.040
Detector resolution: 7.41 pixels mm-1 θmax = 79.1°, θmin = 4.1°
ω and φ scans h = −9→9
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −16→16
Tmin = 0.771, Tmax = 0.982 l = −23→23
63841 measured reflections

(S)-1-(Naphthalen-1-yl)ethanol (1) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.3995P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.19 e Å3
4063 reflections Δρmin = −0.12 e Å3
244 parameters Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0034 (4)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack x determined using 1715 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.04 (4)

(S)-1-(Naphthalen-1-yl)ethanol (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups, All O(H) groups 2.a Ternary CH refined with riding coordinates: C2A(H2A), C2B(H2B) 2.b Aromatic/amide H refined with riding coordinates: C4A(H4A), C5A(H5A), C6A(H6A), C9A(H9A), C10A(H10A), C11A(H11A), C12A(H12A), C4B(H4B), C5B(H5B), C6B(H6B), C9B(H9B), C10B(H10B), C11B(H11B), C12B(H12B) 2.c Idealised Me refined as rotating group: C1A(H1AA,H1AB,H1AC), C1B(H1BA,H1BB,H1BC)

(S)-1-(Naphthalen-1-yl)ethanol (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.74231 (13) 0.62472 (8) 0.49349 (6) 0.0251 (2)
H1A 0.811 (3) 0.6732 (16) 0.5051 (11) 0.038*
C1A 0.63141 (19) 0.46242 (12) 0.52883 (9) 0.0269 (3)
H1AA 0.532808 0.497591 0.550635 0.040*
H1AB 0.656238 0.398943 0.555173 0.040*
H1AC 0.604083 0.445431 0.479294 0.040*
C2A 0.78844 (17) 0.53276 (10) 0.53101 (8) 0.0213 (3)
H2A 0.815388 0.550398 0.581602 0.026*
C3A 0.94438 (17) 0.48044 (10) 0.49746 (8) 0.0205 (3)
C4A 0.97819 (19) 0.49383 (12) 0.42632 (8) 0.0244 (3)
H4A 0.908102 0.539454 0.399347 0.029*
C5A 1.1150 (2) 0.44119 (12) 0.39235 (8) 0.0285 (3)
H5A 1.135926 0.451866 0.343093 0.034*
C6A 1.21719 (19) 0.37518 (12) 0.42994 (8) 0.0265 (3)
H6A 1.308623 0.339984 0.406658 0.032*
C7A 1.18786 (18) 0.35871 (10) 0.50358 (8) 0.0224 (3)
C8A 1.04973 (17) 0.41166 (10) 0.53840 (8) 0.0200 (3)
C9A 1.02091 (19) 0.39056 (11) 0.61172 (8) 0.0238 (3)
H9A 0.931117 0.425656 0.636141 0.029*
C10A 1.1204 (2) 0.32046 (12) 0.64783 (8) 0.0287 (3)
H10A 1.097626 0.306807 0.696590 0.034*
C11A 1.2563 (2) 0.26847 (12) 0.61307 (9) 0.0297 (3)
H11A 1.324712 0.219971 0.638340 0.036*
C12A 1.28916 (18) 0.28809 (11) 0.54313 (9) 0.0267 (3)
H12A 1.382115 0.253617 0.520355 0.032*
O1B 0.43141 (14) 0.71203 (8) 0.46621 (6) 0.0265 (2)
H1B 0.525 (3) 0.6885 (16) 0.4823 (11) 0.040*
C1B 0.23951 (19) 0.70286 (12) 0.36738 (8) 0.0281 (3)
H1BA 0.146648 0.685713 0.400720 0.042*
H1BB 0.218166 0.668709 0.321711 0.042*
H1BC 0.243198 0.777652 0.360274 0.042*
C2B 0.41076 (18) 0.66646 (11) 0.39748 (8) 0.0240 (3)
H2B 0.408204 0.589751 0.402554 0.029*
C3B 0.56084 (18) 0.69671 (11) 0.34933 (8) 0.0230 (3)
C4B 0.6156 (2) 0.79748 (12) 0.34891 (9) 0.0284 (3)
H4B 0.558720 0.846205 0.378444 0.034*
C5B 0.7542 (2) 0.83057 (12) 0.30581 (9) 0.0307 (3)
H5B 0.786287 0.901223 0.305330 0.037*
C6B 0.8418 (2) 0.76161 (12) 0.26494 (9) 0.0288 (3)
H6B 0.936383 0.784165 0.236799 0.035*
C7B 0.79270 (18) 0.65571 (11) 0.26410 (8) 0.0234 (3)
C8B 0.64765 (18) 0.62333 (11) 0.30537 (7) 0.0219 (3)
C9B 0.59869 (19) 0.51755 (11) 0.30078 (8) 0.0252 (3)
H9B 0.500839 0.494047 0.326528 0.030*
C10B 0.6898 (2) 0.44943 (11) 0.26010 (8) 0.0268 (3)
H10B 0.654346 0.379419 0.257880 0.032*
C11B 0.8359 (2) 0.48176 (12) 0.22131 (8) 0.0278 (3)
H11B 0.899890 0.433325 0.194089 0.033*
C12B 0.88542 (19) 0.58302 (12) 0.22294 (8) 0.0268 (3)
H12B 0.982883 0.604710 0.196209 0.032*

(S)-1-(Naphthalen-1-yl)ethanol (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0203 (5) 0.0208 (5) 0.0343 (5) 0.0024 (4) −0.0059 (4) 0.0016 (4)
C1A 0.0173 (6) 0.0267 (7) 0.0367 (8) −0.0001 (6) 0.0008 (6) −0.0006 (6)
C2A 0.0166 (6) 0.0211 (6) 0.0263 (6) 0.0027 (5) −0.0026 (5) 0.0003 (5)
C3A 0.0148 (6) 0.0192 (6) 0.0274 (6) −0.0023 (5) −0.0023 (5) −0.0022 (5)
C4A 0.0200 (7) 0.0258 (7) 0.0276 (7) −0.0031 (6) −0.0028 (6) −0.0004 (6)
C5A 0.0261 (8) 0.0340 (8) 0.0255 (7) −0.0060 (6) 0.0031 (6) −0.0040 (6)
C6A 0.0184 (7) 0.0276 (7) 0.0336 (7) −0.0018 (6) 0.0054 (6) −0.0083 (6)
C7A 0.0158 (6) 0.0186 (6) 0.0327 (7) −0.0029 (5) 0.0004 (5) −0.0060 (5)
C8A 0.0141 (6) 0.0188 (6) 0.0271 (7) −0.0020 (5) −0.0016 (5) −0.0032 (5)
C9A 0.0201 (7) 0.0233 (7) 0.0280 (7) 0.0039 (5) −0.0002 (6) −0.0022 (6)
C10A 0.0276 (7) 0.0288 (7) 0.0297 (7) 0.0060 (6) −0.0022 (6) 0.0014 (6)
C11A 0.0245 (8) 0.0243 (7) 0.0403 (8) 0.0063 (6) −0.0067 (7) 0.0007 (6)
C12A 0.0169 (6) 0.0214 (6) 0.0417 (8) 0.0020 (5) −0.0007 (6) −0.0063 (6)
O1B 0.0205 (5) 0.0295 (5) 0.0295 (5) 0.0065 (4) −0.0024 (4) 0.0007 (4)
C1B 0.0186 (7) 0.0312 (7) 0.0346 (8) −0.0014 (6) −0.0021 (6) 0.0035 (6)
C2B 0.0201 (7) 0.0243 (7) 0.0275 (7) 0.0015 (6) 0.0010 (5) 0.0015 (6)
C3B 0.0186 (6) 0.0236 (7) 0.0268 (7) 0.0005 (5) −0.0011 (5) 0.0027 (6)
C4B 0.0236 (7) 0.0232 (7) 0.0384 (8) 0.0005 (6) 0.0009 (6) 0.0001 (6)
C5B 0.0261 (7) 0.0210 (6) 0.0450 (9) −0.0040 (6) 0.0023 (7) 0.0018 (6)
C6B 0.0220 (7) 0.0287 (7) 0.0356 (8) −0.0024 (6) 0.0019 (6) 0.0039 (6)
C7B 0.0177 (6) 0.0283 (7) 0.0241 (6) 0.0015 (5) −0.0028 (5) 0.0025 (5)
C8B 0.0177 (6) 0.0252 (7) 0.0228 (6) 0.0016 (5) −0.0032 (5) 0.0023 (5)
C9B 0.0235 (7) 0.0253 (7) 0.0270 (7) 0.0000 (6) −0.0033 (6) 0.0017 (6)
C10B 0.0298 (8) 0.0215 (7) 0.0293 (7) 0.0015 (6) −0.0074 (6) −0.0016 (5)
C11B 0.0256 (7) 0.0298 (7) 0.0280 (7) 0.0062 (6) −0.0052 (6) −0.0037 (6)
C12B 0.0190 (7) 0.0344 (8) 0.0270 (7) 0.0023 (6) −0.0012 (6) −0.0003 (6)

(S)-1-(Naphthalen-1-yl)ethanol (1) . Geometric parameters (Å, º)

O1A—H1A 0.85 (2) O1B—H1B 0.85 (2)
O1A—C2A 1.4315 (16) O1B—C2B 1.4295 (18)
C1A—H1AA 0.9800 C1B—H1BA 0.9800
C1A—H1AB 0.9800 C1B—H1BB 0.9800
C1A—H1AC 0.9800 C1B—H1BC 0.9800
C1A—C2A 1.522 (2) C1B—C2B 1.518 (2)
C2A—H2A 1.0000 C2B—H2B 1.0000
C2A—C3A 1.5230 (19) C2B—C3B 1.525 (2)
C3A—C4A 1.374 (2) C3B—C4B 1.375 (2)
C3A—C8A 1.4336 (19) C3B—C8B 1.429 (2)
C4A—H4A 0.9500 C4B—H4B 0.9500
C4A—C5A 1.414 (2) C4B—C5B 1.412 (2)
C5A—H5A 0.9500 C5B—H5B 0.9500
C5A—C6A 1.364 (2) C5B—C6B 1.361 (2)
C6A—H6A 0.9500 C6B—H6B 0.9500
C6A—C7A 1.419 (2) C6B—C7B 1.426 (2)
C7A—C8A 1.4306 (19) C7B—C8B 1.429 (2)
C7A—C12A 1.417 (2) C7B—C12B 1.416 (2)
C8A—C9A 1.423 (2) C8B—C9B 1.427 (2)
C9A—H9A 0.9500 C9B—H9B 0.9500
C9A—C10A 1.372 (2) C9B—C10B 1.365 (2)
C10A—H10A 0.9500 C10B—H10B 0.9500
C10A—C11A 1.411 (2) C10B—C11B 1.411 (2)
C11A—H11A 0.9500 C11B—H11B 0.9500
C11A—C12A 1.363 (2) C11B—C12B 1.369 (2)
C12A—H12A 0.9500 C12B—H12B 0.9500
C2A—O1A—H1A 109.4 (14) C2B—O1B—H1B 105.6 (15)
H1AA—C1A—H1AB 109.5 H1BA—C1B—H1BB 109.5
H1AA—C1A—H1AC 109.5 H1BA—C1B—H1BC 109.5
H1AB—C1A—H1AC 109.5 H1BB—C1B—H1BC 109.5
C2A—C1A—H1AA 109.5 C2B—C1B—H1BA 109.5
C2A—C1A—H1AB 109.5 C2B—C1B—H1BB 109.5
C2A—C1A—H1AC 109.5 C2B—C1B—H1BC 109.5
O1A—C2A—C1A 106.67 (11) O1B—C2B—C1B 107.81 (12)
O1A—C2A—H2A 109.3 O1B—C2B—H2B 109.1
O1A—C2A—C3A 111.46 (12) O1B—C2B—C3B 110.13 (12)
C1A—C2A—H2A 109.3 C1B—C2B—H2B 109.1
C1A—C2A—C3A 110.88 (11) C1B—C2B—C3B 111.45 (12)
C3A—C2A—H2A 109.3 C3B—C2B—H2B 109.1
C4A—C3A—C2A 119.87 (13) C4B—C3B—C2B 118.94 (13)
C4A—C3A—C8A 119.50 (13) C4B—C3B—C8B 119.00 (14)
C8A—C3A—C2A 120.49 (12) C8B—C3B—C2B 122.06 (13)
C3A—C4A—H4A 119.3 C3B—C4B—H4B 119.1
C3A—C4A—C5A 121.43 (14) C3B—C4B—C5B 121.84 (14)
C5A—C4A—H4A 119.3 C5B—C4B—H4B 119.1
C4A—C5A—H5A 119.8 C4B—C5B—H5B 119.9
C6A—C5A—C4A 120.34 (14) C6B—C5B—C4B 120.24 (14)
C6A—C5A—H5A 119.8 C6B—C5B—H5B 119.9
C5A—C6A—H6A 119.8 C5B—C6B—H6B 119.8
C5A—C6A—C7A 120.46 (14) C5B—C6B—C7B 120.42 (14)
C7A—C6A—H6A 119.8 C7B—C6B—H6B 119.8
C6A—C7A—C8A 119.59 (13) C6B—C7B—C8B 119.18 (13)
C12A—C7A—C6A 121.35 (14) C12B—C7B—C6B 120.82 (14)
C12A—C7A—C8A 119.02 (13) C12B—C7B—C8B 120.01 (13)
C7A—C8A—C3A 118.67 (13) C3B—C8B—C7B 119.24 (13)
C9A—C8A—C3A 123.38 (12) C9B—C8B—C3B 123.41 (13)
C9A—C8A—C7A 117.92 (13) C9B—C8B—C7B 117.34 (13)
C8A—C9A—H9A 119.4 C8B—C9B—H9B 119.4
C10A—C9A—C8A 121.22 (14) C10B—C9B—C8B 121.26 (14)
C10A—C9A—H9A 119.4 C10B—C9B—H9B 119.4
C9A—C10A—H10A 119.7 C9B—C10B—H10B 119.6
C9A—C10A—C11A 120.51 (15) C9B—C10B—C11B 120.81 (14)
C11A—C10A—H10A 119.7 C11B—C10B—H10B 119.6
C10A—C11A—H11A 120.1 C10B—C11B—H11B 120.0
C12A—C11A—C10A 119.77 (14) C12B—C11B—C10B 119.91 (14)
C12A—C11A—H11A 120.1 C12B—C11B—H11B 120.0
C7A—C12A—H12A 119.2 C7B—C12B—H12B 119.7
C11A—C12A—C7A 121.55 (14) C11B—C12B—C7B 120.62 (14)
C11A—C12A—H12A 119.2 C11B—C12B—H12B 119.7
O1A—C2A—C3A—C4A −26.91 (17) O1B—C2B—C3B—C4B −44.17 (18)
O1A—C2A—C3A—C8A 157.32 (11) O1B—C2B—C3B—C8B 134.99 (13)
C1A—C2A—C3A—C4A 91.76 (16) C1B—C2B—C3B—C4B 75.44 (18)
C1A—C2A—C3A—C8A −84.01 (16) C1B—C2B—C3B—C8B −105.40 (15)
C2A—C3A—C4A—C5A −175.82 (13) C2B—C3B—C4B—C5B 179.76 (14)
C2A—C3A—C8A—C7A 175.77 (12) C2B—C3B—C8B—C7B −176.97 (13)
C2A—C3A—C8A—C9A −2.2 (2) C2B—C3B—C8B—C9B 2.2 (2)
C3A—C4A—C5A—C6A 0.1 (2) C3B—C4B—C5B—C6B −2.4 (2)
C3A—C8A—C9A—C10A 176.93 (14) C3B—C8B—C9B—C10B −177.44 (13)
C4A—C3A—C8A—C7A −0.01 (19) C4B—C3B—C8B—C7B 2.2 (2)
C4A—C3A—C8A—C9A −177.95 (13) C4B—C3B—C8B—C9B −178.63 (14)
C4A—C5A—C6A—C7A −0.2 (2) C4B—C5B—C6B—C7B 1.3 (2)
C5A—C6A—C7A—C8A 0.2 (2) C5B—C6B—C7B—C8B 1.5 (2)
C5A—C6A—C7A—C12A 178.05 (14) C5B—C6B—C7B—C12B −178.64 (15)
C6A—C7A—C8A—C3A −0.06 (19) C6B—C7B—C8B—C3B −3.2 (2)
C6A—C7A—C8A—C9A 177.99 (13) C6B—C7B—C8B—C9B 177.55 (13)
C6A—C7A—C12A—C11A −176.91 (14) C6B—C7B—C12B—C11B −178.84 (14)
C7A—C8A—C9A—C10A −1.0 (2) C7B—C8B—C9B—C10B 1.8 (2)
C8A—C3A—C4A—C5A 0.0 (2) C8B—C3B—C4B—C5B 0.6 (2)
C8A—C7A—C12A—C11A 1.0 (2) C8B—C7B—C12B—C11B 1.0 (2)
C8A—C9A—C10A—C11A 1.0 (2) C8B—C9B—C10B—C11B 0.1 (2)
C9A—C10A—C11A—C12A 0.1 (2) C9B—C10B—C11B—C12B −1.5 (2)
C10A—C11A—C12A—C7A −1.0 (2) C10B—C11B—C12B—C7B 0.9 (2)
C12A—C7A—C8A—C3A −178.00 (12) C12B—C7B—C8B—C3B 176.92 (13)
C12A—C7A—C8A—C9A 0.05 (19) C12B—C7B—C8B—C9B −2.31 (19)

(S)-1-(Naphthalen-1-yl)ethanol (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···O1Bi 0.85 (2) 1.84 (2) 2.6849 (15) 172 (2)
O1B—H1B···O1A 0.85 (2) 1.89 (2) 2.7119 (14) 165 (2)

Symmetry code: (i) x+1/2, −y+3/2, −z+1.

(R)-1-(Naphthalen-2-yl)ethanol (2) . Crystal data

C12H12O F(000) = 736
Mr = 172.22 Dx = 1.224 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
a = 17.3408 (5) Å Cell parameters from 9778 reflections
b = 6.0327 (2) Å θ = 2.5–78.8°
c = 19.1125 (5) Å µ = 0.60 mm1
β = 110.821 (1)° T = 100 K
V = 1868.82 (10) Å3 Needle, colourless
Z = 8 0.56 × 0.05 × 0.04 mm

(R)-1-(Naphthalen-2-yl)ethanol (2) . Data collection

Bruker D8 VENTURE dual wavelength Mo/Cu diffractometer 7878 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs 7515 reflections with I > 2σ(I)
Mirror optics monochromator Rint = 0.051
Detector resolution: 7.41 pixels mm-1 θmax = 79.1°, θmin = 2.5°
ω and φ scans h = −21→21
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −7→7
Tmin = 0.355, Tmax = 0.473 l = −24→24
70639 measured reflections

(R)-1-(Naphthalen-2-yl)ethanol (2) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.2081P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.19 e Å3
7878 reflections Δρmin = −0.16 e Å3
486 parameters Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.0019 (5)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack x determined using 3213 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.00 (15)

(R)-1-(Naphthalen-2-yl)ethanol (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups, All O(H) groups 2.a Ternary CH refined with riding coordinates: C2A(H2A), C2B(H2B), C2C(H2C), C2D(H2D) 2.b Aromatic/amide H refined with riding coordinates: C4A(H4A), C6A(H6A), C7A(H7A), C8A(H8A), C9A(H9A), C11A(H11A), C12A(H12A), C4B(H4B), C6B(H6B), C7B(H7B), C8B(H8B), C9B(H9B), C11B(H11B), C12B(H12B), C4C(H4C), C6C(H6C), C7C(H7C), C8C(H8C), C9C(H9C), C11C(H11C), C12C(H12C), C4D(H4D), C6D(H6D), C7D(H7D), C8D(H8D), C9D(H9D), C11D(H11D), C12D(H12D) 2.c Idealised Me refined as rotating group: C1A(H1AA,H1AB,H1AC), C1B(H1BA,H1BB,H1BC), C1C(H1CA,H1CB,H1CC), C1D(H1DA,H1DB, H1DC)

(R)-1-(Naphthalen-2-yl)ethanol (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.39030 (8) −0.0225 (2) 0.72219 (7) 0.0247 (3)
H1A 0.3483 (17) −0.082 (5) 0.6890 (15) 0.037*
C1A 0.53036 (12) 0.0875 (4) 0.75148 (11) 0.0309 (4)
H1AA 0.517483 0.243671 0.756330 0.046*
H1AB 0.578269 0.077708 0.735814 0.046*
H1AC 0.542826 0.012981 0.799818 0.046*
C2A 0.45672 (10) −0.0237 (3) 0.69335 (10) 0.0236 (3)
H2A 0.471455 −0.180918 0.687188 0.028*
C3A 0.43001 (10) 0.0900 (3) 0.61778 (10) 0.0210 (3)
C4A 0.43768 (10) −0.0146 (3) 0.55675 (10) 0.0204 (3)
H4A 0.462998 −0.156484 0.562797 0.024*
C5A 0.40842 (10) 0.0855 (3) 0.48470 (10) 0.0195 (3)
C6A 0.41427 (10) −0.0224 (3) 0.42066 (10) 0.0230 (3)
H6A 0.440380 −0.162958 0.425740 0.028*
C7A 0.38245 (11) 0.0755 (3) 0.35172 (10) 0.0257 (4)
H7A 0.387114 0.002842 0.309310 0.031*
C8A 0.34270 (11) 0.2838 (3) 0.34297 (10) 0.0259 (4)
H8A 0.319563 0.348068 0.294596 0.031*
C9A 0.33738 (11) 0.3933 (3) 0.40387 (10) 0.0238 (4)
H9A 0.311400 0.534270 0.397548 0.029*
C10A 0.37034 (10) 0.2978 (3) 0.47634 (10) 0.0203 (3)
C11A 0.36459 (10) 0.4047 (3) 0.54063 (10) 0.0224 (3)
H11A 0.340340 0.547741 0.535878 0.027*
C12A 0.39349 (11) 0.3042 (3) 0.60911 (10) 0.0226 (4)
H12A 0.389163 0.378250 0.651431 0.027*
O1B 0.31560 (9) 0.3220 (3) 0.76906 (7) 0.0328 (3)
H1B 0.3481 (19) 0.231 (6) 0.7609 (16) 0.049*
C1B 0.43974 (13) 0.5252 (4) 0.84375 (12) 0.0332 (4)
H1BA 0.474744 0.393023 0.852326 0.050*
H1BB 0.461417 0.625807 0.886558 0.050*
H1BC 0.439438 0.600540 0.798229 0.050*
C2B 0.35249 (11) 0.4574 (3) 0.83469 (10) 0.0273 (4)
H2B 0.318870 0.595860 0.827838 0.033*
C3B 0.34888 (11) 0.3404 (3) 0.90343 (10) 0.0243 (4)
C4B 0.31125 (11) 0.4384 (3) 0.94742 (10) 0.0250 (4)
H4B 0.286739 0.580409 0.933981 0.030*
C5B 0.30800 (11) 0.3326 (3) 1.01283 (10) 0.0252 (4)
C6B 0.26646 (12) 0.4295 (4) 1.05733 (11) 0.0323 (4)
H6B 0.242253 0.572232 1.044957 0.039*
C7B 0.26112 (13) 0.3187 (4) 1.11786 (12) 0.0388 (5)
H7B 0.232991 0.384551 1.147119 0.047*
C8B 0.29710 (13) 0.1070 (5) 1.13716 (11) 0.0383 (5)
H8B 0.292768 0.031102 1.179160 0.046*
C9B 0.33829 (12) 0.0101 (4) 1.09572 (11) 0.0329 (4)
H9B 0.362970 −0.131504 1.109698 0.039*
C10B 0.34433 (11) 0.1194 (3) 1.03221 (10) 0.0269 (4)
C11B 0.38353 (11) 0.0206 (3) 0.98591 (11) 0.0277 (4)
H11B 0.408560 −0.121073 0.998529 0.033*
C12B 0.38551 (12) 0.1275 (3) 0.92345 (11) 0.0269 (4)
H12B 0.411677 0.058796 0.893052 0.032*
O1C 0.18245 (7) 0.4837 (2) 0.66222 (6) 0.0207 (2)
H1C 0.2289 (16) 0.430 (4) 0.6976 (14) 0.031*
C1C 0.03587 (10) 0.4844 (3) 0.62168 (10) 0.0245 (4)
H1CA 0.033933 0.640010 0.606415 0.037*
H1CB −0.011522 0.452094 0.636555 0.037*
H1CC 0.034009 0.388632 0.579692 0.037*
C2C 0.11532 (10) 0.4417 (3) 0.68743 (9) 0.0196 (3)
H2C 0.116868 0.282329 0.702238 0.024*
C3C 0.12073 (10) 0.5853 (3) 0.75442 (9) 0.0191 (3)
C4C 0.08734 (10) 0.5134 (3) 0.80584 (9) 0.0199 (3)
H4C 0.061745 0.371894 0.799662 0.024*
C5C 0.09049 (10) 0.6471 (3) 0.86803 (9) 0.0191 (3)
C6C 0.05706 (11) 0.5760 (3) 0.92223 (10) 0.0223 (3)
H6C 0.030332 0.436205 0.916673 0.027*
C7C 0.06309 (12) 0.7078 (3) 0.98266 (10) 0.0251 (4)
H7C 0.040990 0.657811 1.018778 0.030*
C8C 0.10188 (11) 0.9169 (3) 0.99138 (10) 0.0243 (4)
H8C 0.105756 1.006899 1.033293 0.029*
C9C 0.13396 (10) 0.9906 (3) 0.93964 (10) 0.0229 (3)
H9C 0.159455 1.132250 0.945779 0.027*
C10C 0.12965 (10) 0.8585 (3) 0.87711 (9) 0.0197 (3)
C11C 0.16374 (10) 0.9291 (3) 0.82350 (10) 0.0215 (3)
H11C 0.189978 1.069636 0.828990 0.026*
C12C 0.15923 (11) 0.7969 (3) 0.76385 (10) 0.0213 (3)
H12C 0.182136 0.847321 0.728339 0.026*
O1D 0.26221 (8) 0.7902 (2) 0.60343 (7) 0.0219 (3)
H1D 0.2286 (16) 0.710 (5) 0.6173 (14) 0.033*
C1D 0.14051 (12) 1.0235 (3) 0.55515 (10) 0.0246 (4)
H1DA 0.103942 0.904295 0.559262 0.037*
H1DB 0.110261 1.121687 0.513614 0.037*
H1DC 0.159932 1.108472 0.601878 0.037*
C2D 0.21417 (10) 0.9238 (3) 0.54066 (9) 0.0199 (3)
H2D 0.249813 1.048575 0.535640 0.024*
C3D 0.18596 (10) 0.7947 (3) 0.46782 (9) 0.0183 (3)
C4D 0.19249 (10) 0.8838 (3) 0.40404 (9) 0.0185 (3)
H4D 0.219660 1.022107 0.406867 0.022*
C5D 0.15950 (10) 0.7738 (3) 0.33394 (9) 0.0189 (3)
C6D 0.16599 (11) 0.8622 (3) 0.26731 (10) 0.0235 (4)
H6D 0.193010 1.000065 0.268862 0.028*
C7D 0.13354 (12) 0.7499 (3) 0.20069 (10) 0.0275 (4)
H7D 0.138461 0.810695 0.156610 0.033*
C8D 0.09286 (12) 0.5448 (3) 0.19713 (10) 0.0276 (4)
H8D 0.070436 0.468750 0.150737 0.033*
C9D 0.08573 (11) 0.4556 (3) 0.26030 (10) 0.0248 (4)
H9D 0.057911 0.318300 0.257387 0.030*
C10D 0.11944 (10) 0.5659 (3) 0.33018 (9) 0.0201 (3)
C11D 0.11518 (11) 0.4746 (3) 0.39733 (10) 0.0231 (3)
H11D 0.089541 0.334646 0.395923 0.028*
C12D 0.14744 (11) 0.5853 (3) 0.46390 (10) 0.0222 (3)
H12D 0.144006 0.521035 0.508076 0.027*

(R)-1-(Naphthalen-2-yl)ethanol (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0227 (6) 0.0283 (7) 0.0217 (6) −0.0025 (5) 0.0064 (5) −0.0004 (5)
C1A 0.0237 (9) 0.0373 (10) 0.0277 (9) 0.0007 (8) 0.0043 (7) −0.0029 (8)
C2A 0.0223 (8) 0.0245 (8) 0.0231 (8) 0.0017 (7) 0.0070 (7) 0.0000 (7)
C3A 0.0152 (7) 0.0219 (8) 0.0242 (8) −0.0020 (6) 0.0050 (6) 0.0001 (7)
C4A 0.0162 (7) 0.0183 (8) 0.0254 (8) 0.0002 (6) 0.0060 (6) 0.0005 (6)
C5A 0.0133 (7) 0.0192 (8) 0.0249 (8) −0.0030 (6) 0.0053 (6) −0.0011 (6)
C6A 0.0184 (7) 0.0222 (8) 0.0274 (8) −0.0008 (6) 0.0071 (6) −0.0012 (7)
C7A 0.0217 (8) 0.0305 (9) 0.0242 (9) −0.0035 (7) 0.0074 (7) −0.0038 (7)
C8A 0.0209 (8) 0.0297 (10) 0.0243 (8) −0.0036 (7) 0.0046 (7) 0.0056 (7)
C9A 0.0175 (8) 0.0214 (8) 0.0303 (9) −0.0008 (6) 0.0058 (7) 0.0040 (7)
C10A 0.0142 (7) 0.0198 (8) 0.0267 (8) −0.0032 (6) 0.0068 (6) 0.0010 (7)
C11A 0.0183 (8) 0.0175 (8) 0.0318 (9) 0.0002 (6) 0.0093 (7) −0.0007 (7)
C12A 0.0208 (8) 0.0213 (8) 0.0273 (9) −0.0020 (6) 0.0103 (7) −0.0046 (7)
O1B 0.0269 (7) 0.0413 (8) 0.0232 (6) 0.0112 (6) 0.0001 (5) −0.0036 (6)
C1B 0.0309 (10) 0.0367 (11) 0.0307 (10) 0.0014 (8) 0.0093 (8) 0.0062 (8)
C2B 0.0261 (9) 0.0276 (9) 0.0236 (8) 0.0069 (7) 0.0032 (7) 0.0014 (7)
C3B 0.0190 (8) 0.0255 (9) 0.0238 (8) 0.0006 (7) 0.0019 (7) −0.0010 (7)
C4B 0.0198 (8) 0.0209 (8) 0.0293 (9) 0.0006 (6) 0.0024 (7) −0.0034 (7)
C5B 0.0171 (8) 0.0294 (9) 0.0255 (9) −0.0025 (7) 0.0032 (7) −0.0058 (7)
C6B 0.0231 (9) 0.0389 (11) 0.0318 (10) −0.0011 (8) 0.0060 (7) −0.0103 (8)
C7B 0.0256 (10) 0.0601 (14) 0.0289 (10) −0.0060 (10) 0.0076 (8) −0.0109 (10)
C8B 0.0276 (10) 0.0597 (15) 0.0238 (9) −0.0109 (10) 0.0046 (8) 0.0019 (9)
C9B 0.0240 (9) 0.0386 (11) 0.0293 (9) −0.0049 (8) 0.0014 (7) 0.0050 (8)
C10B 0.0189 (8) 0.0312 (10) 0.0254 (9) −0.0036 (7) 0.0014 (7) −0.0015 (7)
C11B 0.0233 (9) 0.0238 (9) 0.0303 (9) 0.0019 (7) 0.0024 (7) −0.0004 (7)
C12B 0.0240 (9) 0.0253 (9) 0.0280 (9) 0.0045 (7) 0.0052 (7) −0.0035 (7)
O1C 0.0177 (5) 0.0266 (6) 0.0184 (5) 0.0022 (5) 0.0071 (4) 0.0013 (5)
C1C 0.0196 (8) 0.0290 (9) 0.0243 (8) −0.0003 (7) 0.0071 (7) −0.0035 (7)
C2C 0.0207 (8) 0.0190 (8) 0.0207 (8) 0.0003 (6) 0.0092 (6) 0.0001 (6)
C3C 0.0173 (7) 0.0194 (8) 0.0197 (8) 0.0018 (6) 0.0057 (6) 0.0007 (6)
C4C 0.0188 (8) 0.0177 (8) 0.0223 (8) 0.0007 (6) 0.0062 (6) 0.0010 (6)
C5C 0.0165 (8) 0.0197 (8) 0.0193 (8) 0.0018 (6) 0.0043 (6) 0.0014 (6)
C6C 0.0206 (8) 0.0234 (8) 0.0229 (8) −0.0002 (6) 0.0078 (7) 0.0006 (7)
C7C 0.0238 (9) 0.0315 (9) 0.0206 (8) 0.0022 (7) 0.0088 (7) 0.0012 (7)
C8C 0.0215 (8) 0.0296 (9) 0.0195 (8) 0.0024 (7) 0.0046 (6) −0.0049 (7)
C9C 0.0187 (8) 0.0219 (8) 0.0249 (8) 0.0010 (7) 0.0037 (6) −0.0032 (7)
C10C 0.0163 (7) 0.0202 (8) 0.0208 (8) 0.0023 (6) 0.0043 (6) 0.0009 (6)
C11C 0.0203 (8) 0.0177 (8) 0.0256 (8) −0.0008 (6) 0.0072 (7) 0.0001 (6)
C12C 0.0204 (8) 0.0217 (8) 0.0230 (8) 0.0004 (6) 0.0090 (7) 0.0026 (6)
O1D 0.0209 (6) 0.0242 (6) 0.0191 (6) −0.0022 (5) 0.0050 (5) 0.0009 (5)
C1D 0.0294 (9) 0.0223 (9) 0.0226 (8) 0.0031 (7) 0.0098 (7) −0.0020 (7)
C2D 0.0223 (8) 0.0188 (8) 0.0177 (7) −0.0029 (6) 0.0060 (6) −0.0012 (6)
C3D 0.0159 (7) 0.0191 (8) 0.0193 (7) 0.0009 (6) 0.0056 (6) −0.0019 (6)
C4D 0.0170 (7) 0.0167 (7) 0.0213 (8) −0.0011 (6) 0.0061 (6) −0.0002 (6)
C5D 0.0159 (8) 0.0210 (8) 0.0198 (8) 0.0016 (6) 0.0062 (6) 0.0007 (6)
C6D 0.0222 (8) 0.0266 (9) 0.0219 (8) −0.0020 (7) 0.0083 (7) 0.0021 (7)
C7D 0.0282 (10) 0.0348 (10) 0.0190 (8) −0.0011 (8) 0.0078 (7) 0.0018 (7)
C8D 0.0265 (9) 0.0342 (10) 0.0190 (8) −0.0013 (7) 0.0044 (7) −0.0063 (7)
C9D 0.0239 (8) 0.0242 (9) 0.0236 (8) −0.0030 (7) 0.0050 (7) −0.0033 (7)
C10D 0.0184 (8) 0.0213 (8) 0.0196 (8) 0.0001 (6) 0.0053 (6) −0.0011 (6)
C11D 0.0251 (8) 0.0191 (8) 0.0245 (8) −0.0046 (7) 0.0080 (7) −0.0013 (7)
C12D 0.0251 (8) 0.0212 (8) 0.0209 (8) −0.0021 (7) 0.0088 (7) 0.0011 (6)

(R)-1-(Naphthalen-2-yl)ethanol (2) . Geometric parameters (Å, º)

O1A—H1A 0.86 (3) O1C—H1C 0.91 (3)
O1A—C2A 1.443 (2) O1C—C2C 1.4318 (19)
C1A—H1AA 0.9800 C1C—H1CA 0.9800
C1A—H1AB 0.9800 C1C—H1CB 0.9800
C1A—H1AC 0.9800 C1C—H1CC 0.9800
C1A—C2A 1.519 (3) C1C—C2C 1.521 (2)
C2A—H2A 1.0000 C2C—H2C 1.0000
C2A—C3A 1.515 (2) C2C—C3C 1.521 (2)
C3A—C4A 1.374 (2) C3C—C4C 1.376 (2)
C3A—C12A 1.423 (2) C3C—C12C 1.422 (2)
C4A—H4A 0.9500 C4C—H4C 0.9500
C4A—C5A 1.422 (2) C4C—C5C 1.422 (2)
C5A—C6A 1.421 (2) C5C—C6C 1.421 (2)
C5A—C10A 1.424 (2) C5C—C10C 1.426 (2)
C6A—H6A 0.9500 C6C—H6C 0.9500
C6A—C7A 1.368 (3) C6C—C7C 1.375 (3)
C7A—H7A 0.9500 C7C—H7C 0.9500
C7A—C8A 1.414 (3) C7C—C8C 1.411 (3)
C8A—H8A 0.9500 C8C—H8C 0.9500
C8A—C9A 1.370 (3) C8C—C9C 1.370 (3)
C9A—H9A 0.9500 C9C—H9C 0.9500
C9A—C10A 1.419 (2) C9C—C10C 1.416 (2)
C10A—C11A 1.422 (2) C10C—C11C 1.418 (2)
C11A—H11A 0.9500 C11C—H11C 0.9500
C11A—C12A 1.366 (3) C11C—C12C 1.371 (2)
C12A—H12A 0.9500 C12C—H12C 0.9500
O1B—H1B 0.84 (3) O1D—H1D 0.87 (3)
O1B—C2B 1.442 (2) O1D—C2D 1.440 (2)
C1B—H1BA 0.9800 C1D—H1DA 0.9800
C1B—H1BB 0.9800 C1D—H1DB 0.9800
C1B—H1BC 0.9800 C1D—H1DC 0.9800
C1B—C2B 1.517 (3) C1D—C2D 1.524 (2)
C2B—H2B 1.0000 C2D—H2D 1.0000
C2B—C3B 1.512 (3) C2D—C3D 1.517 (2)
C3B—C4B 1.369 (3) C3D—C4D 1.373 (2)
C3B—C12B 1.424 (3) C3D—C12D 1.419 (2)
C4B—H4B 0.9500 C4D—H4D 0.9500
C4B—C5B 1.423 (3) C4D—C5D 1.421 (2)
C5B—C6B 1.421 (3) C5D—C6D 1.421 (2)
C5B—C10B 1.422 (3) C5D—C10D 1.423 (2)
C6B—H6B 0.9500 C6D—H6D 0.9500
C6B—C7B 1.368 (3) C6D—C7D 1.374 (3)
C7B—H7B 0.9500 C7D—H7D 0.9500
C7B—C8B 1.412 (4) C7D—C8D 1.414 (3)
C8B—H8B 0.9500 C8D—H8D 0.9500
C8B—C9B 1.372 (3) C8D—C9D 1.367 (3)
C9B—H9B 0.9500 C9D—H9D 0.9500
C9B—C10B 1.418 (3) C9D—C10D 1.419 (2)
C10B—C11B 1.424 (3) C10D—C11D 1.422 (2)
C11B—H11B 0.9500 C11D—H11D 0.9500
C11B—C12B 1.368 (3) C11D—C12D 1.368 (2)
C12B—H12B 0.9500 C12D—H12D 0.9500
C2A—O1A—H1A 107.4 (17) C2C—O1C—H1C 107.4 (15)
H1AA—C1A—H1AB 109.5 H1CA—C1C—H1CB 109.5
H1AA—C1A—H1AC 109.5 H1CA—C1C—H1CC 109.5
H1AB—C1A—H1AC 109.5 H1CB—C1C—H1CC 109.5
C2A—C1A—H1AA 109.5 C2C—C1C—H1CA 109.5
C2A—C1A—H1AB 109.5 C2C—C1C—H1CB 109.5
C2A—C1A—H1AC 109.5 C2C—C1C—H1CC 109.5
O1A—C2A—C1A 107.21 (14) O1C—C2C—C1C 107.34 (13)
O1A—C2A—H2A 108.8 O1C—C2C—H2C 108.8
O1A—C2A—C3A 110.30 (14) O1C—C2C—C3C 111.61 (13)
C1A—C2A—H2A 108.8 C1C—C2C—H2C 108.8
C3A—C2A—C1A 112.95 (16) C1C—C2C—C3C 111.47 (14)
C3A—C2A—H2A 108.8 C3C—C2C—H2C 108.8
C4A—C3A—C2A 120.81 (16) C4C—C3C—C2C 120.39 (15)
C4A—C3A—C12A 119.47 (16) C4C—C3C—C12C 119.36 (15)
C12A—C3A—C2A 119.67 (16) C12C—C3C—C2C 120.25 (15)
C3A—C4A—H4A 119.4 C3C—C4C—H4C 119.4
C3A—C4A—C5A 121.21 (16) C3C—C4C—C5C 121.16 (16)
C5A—C4A—H4A 119.4 C5C—C4C—H4C 119.4
C4A—C5A—C10A 118.85 (16) C4C—C5C—C10C 118.97 (15)
C6A—C5A—C4A 121.96 (16) C6C—C5C—C4C 122.26 (16)
C6A—C5A—C10A 119.18 (16) C6C—C5C—C10C 118.77 (15)
C5A—C6A—H6A 119.9 C5C—C6C—H6C 119.7
C7A—C6A—C5A 120.25 (17) C7C—C6C—C5C 120.57 (17)
C7A—C6A—H6A 119.9 C7C—C6C—H6C 119.7
C6A—C7A—H7A 119.7 C6C—C7C—H7C 119.8
C6A—C7A—C8A 120.67 (17) C6C—C7C—C8C 120.45 (17)
C8A—C7A—H7A 119.7 C8C—C7C—H7C 119.8
C7A—C8A—H8A 119.8 C7C—C8C—H8C 119.9
C9A—C8A—C7A 120.34 (17) C9C—C8C—C7C 120.24 (17)
C9A—C8A—H8A 119.8 C9C—C8C—H8C 119.9
C8A—C9A—H9A 119.7 C8C—C9C—H9C 119.6
C8A—C9A—C10A 120.55 (17) C8C—C9C—C10C 120.90 (17)
C10A—C9A—H9A 119.7 C10C—C9C—H9C 119.6
C9A—C10A—C5A 118.98 (16) C9C—C10C—C5C 119.07 (15)
C9A—C10A—C11A 122.11 (16) C9C—C10C—C11C 122.00 (16)
C11A—C10A—C5A 118.89 (16) C11C—C10C—C5C 118.92 (15)
C10A—C11A—H11A 119.6 C10C—C11C—H11C 119.6
C12A—C11A—C10A 120.81 (16) C12C—C11C—C10C 120.72 (16)
C12A—C11A—H11A 119.6 C12C—C11C—H11C 119.6
C3A—C12A—H12A 119.6 C3C—C12C—H12C 119.6
C11A—C12A—C3A 120.75 (16) C11C—C12C—C3C 120.88 (16)
C11A—C12A—H12A 119.6 C11C—C12C—H12C 119.6
C2B—O1B—H1B 114 (2) C2D—O1D—H1D 108.3 (17)
H1BA—C1B—H1BB 109.5 H1DA—C1D—H1DB 109.5
H1BA—C1B—H1BC 109.5 H1DA—C1D—H1DC 109.5
H1BB—C1B—H1BC 109.5 H1DB—C1D—H1DC 109.5
C2B—C1B—H1BA 109.5 C2D—C1D—H1DA 109.5
C2B—C1B—H1BB 109.5 C2D—C1D—H1DB 109.5
C2B—C1B—H1BC 109.5 C2D—C1D—H1DC 109.5
O1B—C2B—C1B 111.60 (16) O1D—C2D—C1D 110.11 (13)
O1B—C2B—H2B 107.5 O1D—C2D—H2D 107.9
O1B—C2B—C3B 110.39 (16) O1D—C2D—C3D 112.32 (13)
C1B—C2B—H2B 107.5 C1D—C2D—H2D 107.9
C3B—C2B—C1B 111.99 (15) C3D—C2D—C1D 110.59 (14)
C3B—C2B—H2B 107.5 C3D—C2D—H2D 107.9
C4B—C3B—C2B 120.52 (17) C4D—C3D—C2D 120.81 (15)
C4B—C3B—C12B 119.31 (17) C4D—C3D—C12D 119.19 (15)
C12B—C3B—C2B 120.16 (17) C12D—C3D—C2D 119.87 (15)
C3B—C4B—H4B 119.3 C3D—C4D—H4D 119.3
C3B—C4B—C5B 121.49 (17) C3D—C4D—C5D 121.43 (15)
C5B—C4B—H4B 119.3 C5D—C4D—H4D 119.3
C6B—C5B—C4B 121.86 (18) C4D—C5D—C6D 122.42 (16)
C6B—C5B—C10B 119.23 (18) C4D—C5D—C10D 119.02 (15)
C10B—C5B—C4B 118.85 (17) C6D—C5D—C10D 118.55 (15)
C5B—C6B—H6B 119.8 C5D—C6D—H6D 119.7
C7B—C6B—C5B 120.4 (2) C7D—C6D—C5D 120.58 (17)
C7B—C6B—H6B 119.8 C7D—C6D—H6D 119.7
C6B—C7B—H7B 119.8 C6D—C7D—H7D 119.7
C6B—C7B—C8B 120.5 (2) C6D—C7D—C8D 120.60 (17)
C8B—C7B—H7B 119.8 C8D—C7D—H7D 119.7
C7B—C8B—H8B 119.8 C7D—C8D—H8D 119.9
C9B—C8B—C7B 120.5 (2) C9D—C8D—C7D 120.14 (16)
C9B—C8B—H8B 119.8 C9D—C8D—H8D 119.9
C8B—C9B—H9B 119.7 C8D—C9D—H9D 119.7
C8B—C9B—C10B 120.5 (2) C8D—C9D—C10D 120.69 (17)
C10B—C9B—H9B 119.7 C10D—C9D—H9D 119.7
C5B—C10B—C11B 118.81 (17) C9D—C10D—C5D 119.43 (16)
C9B—C10B—C5B 118.88 (18) C9D—C10D—C11D 122.10 (16)
C9B—C10B—C11B 122.29 (19) C11D—C10D—C5D 118.47 (15)
C10B—C11B—H11B 119.6 C10D—C11D—H11D 119.5
C12B—C11B—C10B 120.70 (18) C12D—C11D—C10D 120.98 (16)
C12B—C11B—H11B 119.6 C12D—C11D—H11D 119.5
C3B—C12B—H12B 119.6 C3D—C12D—H12D 119.6
C11B—C12B—C3B 120.84 (17) C11D—C12D—C3D 120.87 (16)
C11B—C12B—H12B 119.6 C11D—C12D—H12D 119.6
O1A—C2A—C3A—C4A −126.61 (17) O1C—C2C—C3C—C4C −152.07 (15)
O1A—C2A—C3A—C12A 50.9 (2) O1C—C2C—C3C—C12C 28.9 (2)
C1A—C2A—C3A—C4A 113.44 (19) C1C—C2C—C3C—C4C 87.92 (19)
C1A—C2A—C3A—C12A −69.1 (2) C1C—C2C—C3C—C12C −91.07 (19)
C2A—C3A—C4A—C5A 176.32 (14) C2C—C3C—C4C—C5C −178.83 (14)
C2A—C3A—C12A—C11A −176.19 (15) C2C—C3C—C12C—C11C 179.27 (15)
C3A—C4A—C5A—C6A −178.65 (15) C3C—C4C—C5C—C6C −179.49 (16)
C3A—C4A—C5A—C10A −0.2 (2) C3C—C4C—C5C—C10C −0.5 (2)
C4A—C3A—C12A—C11A 1.3 (3) C4C—C3C—C12C—C11C 0.3 (2)
C4A—C5A—C6A—C7A 177.39 (16) C4C—C5C—C6C—C7C 178.39 (16)
C4A—C5A—C10A—C9A −176.88 (15) C4C—C5C—C10C—C9C −179.05 (15)
C4A—C5A—C10A—C11A 1.4 (2) C4C—C5C—C10C—C11C 0.4 (2)
C5A—C6A—C7A—C8A −0.6 (3) C5C—C6C—C7C—C8C 0.6 (3)
C5A—C10A—C11A—C12A −1.3 (2) C5C—C10C—C11C—C12C 0.0 (2)
C6A—C5A—C10A—C9A 1.6 (2) C6C—C5C—C10C—C9C 0.0 (2)
C6A—C5A—C10A—C11A 179.92 (15) C6C—C5C—C10C—C11C 179.43 (15)
C6A—C7A—C8A—C9A 1.7 (3) C6C—C7C—C8C—C9C 0.0 (3)
C7A—C8A—C9A—C10A −1.1 (3) C7C—C8C—C9C—C10C −0.6 (3)
C8A—C9A—C10A—C5A −0.5 (2) C8C—C9C—C10C—C5C 0.7 (2)
C8A—C9A—C10A—C11A −178.80 (16) C8C—C9C—C10C—C11C −178.81 (16)
C9A—C10A—C11A—C12A 176.95 (16) C9C—C10C—C11C—C12C 179.46 (16)
C10A—C5A—C6A—C7A −1.0 (2) C10C—C5C—C6C—C7C −0.6 (3)
C10A—C11A—C12A—C3A −0.1 (3) C10C—C11C—C12C—C3C −0.3 (3)
C12A—C3A—C4A—C5A −1.2 (3) C12C—C3C—C4C—C5C 0.2 (2)
O1B—C2B—C3B—C4B −123.14 (18) O1D—C2D—C3D—C4D −134.67 (16)
O1B—C2B—C3B—C12B 57.6 (2) O1D—C2D—C3D—C12D 49.4 (2)
C1B—C2B—C3B—C4B 111.9 (2) C1D—C2D—C3D—C4D 101.89 (18)
C1B—C2B—C3B—C12B −67.4 (2) C1D—C2D—C3D—C12D −74.01 (19)
C2B—C3B—C4B—C5B −179.22 (15) C2D—C3D—C4D—C5D −174.15 (15)
C2B—C3B—C12B—C11B 179.29 (17) C2D—C3D—C12D—C11D 174.36 (16)
C3B—C4B—C5B—C6B −177.67 (17) C3D—C4D—C5D—C6D −179.58 (16)
C3B—C4B—C5B—C10B −0.5 (3) C3D—C4D—C5D—C10D −0.5 (2)
C4B—C3B—C12B—C11B 0.0 (3) C4D—C3D—C12D—C11D −1.6 (3)
C4B—C5B—C6B—C7B 176.88 (17) C4D—C5D—C6D—C7D 179.71 (17)
C4B—C5B—C10B—C9B −177.55 (16) C4D—C5D—C10D—C9D 179.51 (16)
C4B—C5B—C10B—C11B 0.7 (2) C4D—C5D—C10D—C11D −1.0 (2)
C5B—C6B—C7B—C8B 0.3 (3) C5D—C6D—C7D—C8D 0.2 (3)
C5B—C10B—C11B—C12B −0.7 (3) C5D—C10D—C11D—C12D 1.2 (3)
C6B—C5B—C10B—C9B −0.3 (3) C6D—C5D—C10D—C9D −1.4 (2)
C6B—C5B—C10B—C11B 178.02 (17) C6D—C5D—C10D—C11D 178.15 (16)
C6B—C7B—C8B—C9B 0.3 (3) C6D—C7D—C8D—C9D −0.2 (3)
C7B—C8B—C9B—C10B −0.9 (3) C7D—C8D—C9D—C10D −0.5 (3)
C8B—C9B—C10B—C5B 0.9 (3) C8D—C9D—C10D—C5D 1.3 (3)
C8B—C9B—C10B—C11B −177.32 (19) C8D—C9D—C10D—C11D −178.16 (17)
C9B—C10B—C11B—C12B 177.54 (17) C9D—C10D—C11D—C12D −179.34 (16)
C10B—C5B—C6B—C7B −0.3 (3) C10D—C5D—C6D—C7D 0.6 (3)
C10B—C11B—C12B—C3B 0.3 (3) C10D—C11D—C12D—C3D 0.1 (3)
C12B—C3B—C4B—C5B 0.1 (3) C12D—C3D—C4D—C5D 1.8 (2)

(R)-1-(Naphthalen-2-yl)ethanol (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···O1Di 0.86 (3) 1.94 (3) 2.7890 (18) 171 (2)
O1B—H1B···O1A 0.84 (3) 1.95 (3) 2.761 (2) 162 (3)
O1C—H1C···O1B 0.91 (3) 1.76 (3) 2.6648 (18) 177 (2)
O1D—H1D···O1C 0.87 (3) 1.93 (3) 2.7747 (18) 163 (2)

Symmetry code: (i) x, y−1, z.

Funding Statement

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. 334853423).

References

  1. Anderson, K. M., Goeta, A. E. & Steed, J. W. (2008). Cryst. Growth Des.8, 2517–2524.
  2. Brock, C. P. & Duncan, L. L. (1994). Chem. Mater.6, 1307–1312.
  3. Brock, C. P., Schweizer, W. B. & Dunitz, J. D. (1991). J. Am. Chem. Soc.113, 9811–9820.
  4. Bruker (2016). SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
  5. Bruker (2024). APEX6. Bruker AXS LLC, Madison, Wisconsin, USA.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  7. Gerkin, R. E. (2000). Acta Cryst. C56, 1287–1288. [DOI] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Gruber, T., Seichter, W. & Weber, E. (2010). Acta Cryst. E66, o443. [DOI] [PMC free article] [PubMed]
  10. Islor, A. M., Somashekara, B., Garudachari, B., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. New Cryst. Struct.228, 303–304.
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ4, 575–587. [DOI] [PMC free article] [PubMed]
  13. Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci.3, 2191–2201.
  14. Morales-Espinoza, E. G., Lijanova, I. V., Morales-Saavedra, O. G., Torres-Zuñiga, V., Hernandez-Ortega, S. & Martínez-García, M. (2011). Molecules16, 6950–6968. [DOI] [PMC free article] [PubMed]
  15. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  19. Staples, R. J. & George, S. (2005). Z. Kristallogr. New Cryst. Struct.220, 383–384.
  20. Steed, K. M. & Steed, J. W. (2015). Chem. Rev.115, 2895–2933. [DOI] [PubMed]
  21. Sweeting, L. M. & Rheingold, A. L. (1988). J. Phys. Chem.92, 5648–5655.
  22. Taylor, R., Cole, J. C. & Groom, C. R. (2016). Cryst. Growth Des.16, 2988–3001.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989025009533/zv2039sup1.cif

e-81-01131-sup1.cif (4.3MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989025009533/zv20391sup2.hkl

e-81-01131-1sup2.hkl (323.9KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989025009533/zv20392sup3.hkl

e-81-01131-2sup3.hkl (625.5KB, hkl)
e-81-01131-1sup4.cml (3.8KB, cml)

Supporting information file. DOI: 10.1107/S2056989025009533/zv20391sup4.cml

e-81-01131-2sup5.cml (3.8KB, cml)

Supporting information file. DOI: 10.1107/S2056989025009533/zv20392sup5.cml

CCDC references: 2498864, 2498863

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES