Skip to main content
IUCrData logoLink to IUCrData
. 2025 Nov 11;10(Pt 11):x250979. doi: 10.1107/S2414314625009794

Triclinic polymorph of 1-hy­droxy­cyclo­hexa­necarb­oxy­lic acid

Lubabalo Ndima a, Eric Cyriel Hosten a, Richard Betz a,*
Editor: W T A Harrisonb
PMCID: PMC12810265  PMID: 41551125

The title compound is a derivative of cyclo­hexa­necarb­oxy­lic acid bearing a hydroxyl group in its α-position and is a polymorph of the previously reported monoclinic form.

Keywords: crystal structure, polymorph

Abstract

The asymmetric unit of the title compound, C7H12O3, an α-hy­droxy­carb­oxy­lic acid, contains two complete mol­ecules. In the extended structure, O—H⋯O hydrogen bonds connect the mol­ecules into sheets lying perpendicular to the crystallographic b axis.graphic file with name x-10-x250979-scheme1-3D1.jpg

Structure description

The Krebs cycle – also known as the citric acid cycle – is at the centre of metabolic processes in aerobic organisms. It involves a number of hy­droxy­carb­oxy­lic acids that constitute intriguing chelating ligands for a variety of transition metals of pharmaceutical inter­est (McMurry, 2008). These acids classify as potential chelating ligands which have found widespread use in coordination chemistry due to the increased stability of coordination compounds they can form in comparison to monodentate ligands (Gade, 1998). Hy­droxy­carb­oxy­lic acids are a particularly inter­esting in this aspect as they offer two functional groups that – depending on the individual requisite experimental conditions – can either act as fully neutral, fully anionic or mixed neutral-anionic donors. Upon varying the substitution pattern on the hydro­carbon backbone, the acidity of the respective hydroxyl groups can be fine-tuned over a wide range and they may, thus, serve as probes for establishing the rules in which pKa range coordination to various central atoms can be observed. Furthermore, the steric pretence of potential substituents may give rise to unique coordination and bonding patterns. Given the multidentate nature of hy­droxy­carb­oxy­lic acids encountered in the Krebs cycle it appears prudent to investigate simpler ‘cut outs’ with a more limited number of donor sites to avoid more complex mixtures of reaction products in envisioned synthesis procedures, thus prompting the diffraction study of the title compound to allow for comparisons of metrical parameters of the free ligand and the ligand in envisioned coordination compounds. The present study confirms our continued inter­est into structural aspects of α-hy­droxy­carb­oxy­lic acids such as 1-hy­droxy­cyclo­propane­carb­oxy­lic acid (Betz & Klüfers, 2007a), 1-hy­droxy­cyclo­butane­carb­oxy­lic acid (Betz & Klüfers, 2007b), 1-hy­droxy­cyclo­penta­necarb­oxy­lic acid (Betz & Klüfers, 2007c), 2-hydroxy­bi­cyclo­(2.2.1)heptane-2-endo-carb­oxy­lic acid (Betz & Klüfers, 2007d), hy­droxy­isovaleric acid (Dasi et al., 2024) or tert-butyl­glycolic acid (Betz et al., 2007). Furthermore, geometrical data for glycolic acid (Ellison et al., 1971; Pijper, 1971) and l-lactic acid (Schouten et al., 1994; Yang et al., 2021) are apparent in the literature.

The structure of a monoclinic polymorph (space group P21/c) of the title compound has been reported earlier (Cambridge Structural Database refcode SIMCEX; Xu et al., 2007), where the sample was recrystallized from ‘petrol (sic) ether’ solution. The very brief discussion in this paper provided an incorrect analysis of the hydrogen-bonding pattern (see below).

The title compound, C7H12O3, is a derivative of cyclo­hexa­necarb­oxy­lic acid featuring a hy­droxy group in the α-position. The asymmetric unit contains two mol­ecules. The C=O bond lengths in the carboxyl groups are 1.3030 (13) and 1.3206 (12) Å, which are in good agreement with other carb­oxy­lic acids whose metrical parameters have been deposited with the Cambridge Structural Database (Groom et al., 2016). Both six-membered rings adopt a 1C4 (chair) conformation (Boeyens, 1978) with the hydroxyl groups invariably occupying the axial position (Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal, O—H⋯O hydrogen bonds (Table 1) connect the mol­ecules into sheets lying perpendicular to the crystallographic b axis. The carboxyl groups in the first (C11) mol­ecule give rise to the common pattern of forming centrosymmetric dimers based on hydrogen bonding while a similar cyclic pattern is observed for the second (C21) mol­ecule present in the asymmetric unit, however, in the latter case involving the alcoholic hydroxyl group as donor and the ketone-type oxygen atom of a symmetry-generated equivalent mol­ecule as acceptor. Furthermore, the alcoholic hydroxyl group of the first mol­ecule employs the oxygen atom of the second mol­ecule’s alcoholic hy­droxy group as acceptor while the carb­oxy­lic OH group of the second mol­ecule establishes an O—H⋯O inter­action to the oxygen atom of the alcoholic hydroxyl group of the first mol­ecule, thus extending the dimeric patterns to the two-dimensional connectivity pattern as described above. In terms of graph-set analysis (Etter et al., 1990), the hydrogen bonding pattern can be described as DDR22(8)R22(10) on the unary level (Fig. 2). While the hydrogen bonding pattern in the monoclinic polymorph of the title compound is stated erroneously as giving rise ‘to a hydrogen-bonded ten-membered ring’ (Xu et al., 2007), the correct analysis of the hydrogen bonding in the monoclinic polymorph shows the presence of a centrosymmetric twelve-membered ring established by O—H⋯O inter­actions supported by the carboxyl group’s H atom to the oxygen atom of the alcoholic group and, in turn, the latter’s H atom seeking the ketonic oxygen atom as acceptor. The graph-set descriptor on the unary level would thus be R44(12) for the monoclinic polymorph.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O21i 0.84 1.89 2.7195 (10) 169
O12—H12⋯O13ii 0.84 1.80 2.6359 (11) 176
O21—H21⋯O23iii 0.84 1.95 2.7716 (11) 166
O22—H22⋯O11 0.84 1.84 2.6594 (10) 164
C26—H26A⋯O13i 0.99 2.58 3.4349 (14) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Selected inter­molecular contacts in the extended structure of the title compound, viewed along [Inline graphic00].

Synthesis and crystallization

The compound was obtained following a standard procedure by reacting ortho-toluidine with KSCN and bromine in acetic acid (Becker et al., 2000). Crystals suitable for the diffraction study were obtained upon free evaporation of the reaction mixture after workup at room temperature.

Refinement

Refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C7H12O3
M r 144.17
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 200
a, b, c (Å) 6.5906 (2), 11.1237 (3), 11.3502 (3)
α, β, γ (°) 109.798 (1), 96.912 (1), 102.830 (1)
V3) 745.83 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.59 × 0.54 × 0.35
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.969, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23049, 3702, 3151
R int 0.019
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.04
No. of reflections 3702
No. of parameters 186
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.15

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick 2008), SHELXL2019/3 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020), SHELXL2019/3 (Sheldrick, 2015) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314625009794/hb4541sup1.cif

x-10-x250979-sup1.cif (678.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314625009794/hb4541Isup2.hkl

x-10-x250979-Isup2.hkl (295.2KB, hkl)
x-10-x250979-Isup3.cml (3.2KB, cml)

Supporting information file. DOI: 10.1107/S2414314625009794/hb4541Isup3.cml

CCDC reference: 2500425

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

1-Hydroxycyclohexanecarboxylic acid. Crystal data

C7H12O3 Z = 4
Mr = 144.17 F(000) = 312
Triclinic, P1 Dx = 1.284 Mg m3
a = 6.5906 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.1237 (3) Å Cell parameters from 9996 reflections
c = 11.3502 (3) Å θ = 2.2–28.3°
α = 109.798 (1)° µ = 0.10 mm1
β = 96.912 (1)° T = 200 K
γ = 102.830 (1)° Block, colourless
V = 745.83 (4) Å3 0.59 × 0.54 × 0.35 mm

1-Hydroxycyclohexanecarboxylic acid. Data collection

Bruker APEXII CCD diffractometer 3702 independent reflections
Radiation source: sealed tube 3151 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
φ and ω scans θmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −8→8
Tmin = 0.969, Tmax = 1.000 k = −14→14
23049 measured reflections l = −15→15

1-Hydroxycyclohexanecarboxylic acid. Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.1705P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3702 reflections Δρmax = 0.32 e Å3
186 parameters Δρmin = −0.15 e Å3
0 restraints Extinction correction: SHELXL-2019/2 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.036 (5)

1-Hydroxycyclohexanecarboxylic acid. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The carbon-bound H atoms were placed in calculated positions (C—H = 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C). The H atoms of the hydroxyl groups were allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite with Uiso(H) = 1.5Ueq(O).

1-Hydroxycyclohexanecarboxylic acid. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O11 0.67725 (11) 0.34334 (7) 0.65734 (6) 0.02704 (17)
H11 0.760802 0.417523 0.669574 0.041*
O12 0.58881 (15) 0.35087 (8) 0.96223 (8) 0.0422 (2)
H12 0.537786 0.401756 1.015974 0.063*
O13 0.58614 (15) 0.49905 (8) 0.87073 (8) 0.0421 (2)
O21 0.02975 (12) 0.43479 (7) 0.32898 (8) 0.03120 (18)
H21 −0.061970 0.454671 0.371597 0.047*
O22 0.34101 (13) 0.27428 (7) 0.46871 (7) 0.03457 (19)
H22 0.433087 0.304288 0.537272 0.052*
O23 0.27903 (13) 0.47184 (8) 0.55248 (8) 0.0369 (2)
C11 0.71553 (15) 0.31231 (9) 0.76821 (9) 0.0238 (2)
C12 0.61015 (18) 0.16307 (10) 0.72850 (11) 0.0326 (2)
H12A 0.616442 0.140314 0.805712 0.039*
H12B 0.458347 0.141763 0.687737 0.039*
C13 0.72017 (19) 0.07935 (11) 0.63497 (11) 0.0367 (3)
H13A 0.654624 −0.016172 0.615835 0.044*
H13B 0.699122 0.094119 0.553654 0.044*
C14 0.9572 (2) 0.11511 (13) 0.69000 (12) 0.0434 (3)
H14A 0.978706 0.092272 0.766768 0.052*
H14B 1.025346 0.062640 0.625831 0.052*
C15 1.06093 (18) 0.26264 (12) 0.72628 (12) 0.0395 (3)
H15A 1.049767 0.283741 0.648142 0.047*
H15B 1.213989 0.284207 0.764521 0.047*
C16 0.95595 (16) 0.34778 (10) 0.82147 (10) 0.0289 (2)
H16A 1.022076 0.443016 0.839636 0.035*
H16B 0.979598 0.333547 0.902950 0.035*
C17 0.62132 (16) 0.39617 (10) 0.87219 (10) 0.0271 (2)
C21 0.07710 (15) 0.31985 (9) 0.34127 (9) 0.0248 (2)
C22 −0.12496 (17) 0.22400 (10) 0.34711 (11) 0.0307 (2)
H22A −0.088458 0.147749 0.361614 0.037*
H22B −0.183688 0.270495 0.420145 0.037*
C23 −0.29341 (19) 0.17261 (13) 0.22306 (13) 0.0436 (3)
H23A −0.417294 0.106103 0.227129 0.052*
H23B −0.343043 0.247436 0.214122 0.052*
C24 −0.2051 (3) 0.10925 (14) 0.10684 (13) 0.0548 (4)
H24A −0.171321 0.028068 0.110666 0.066*
H24B −0.314381 0.082553 0.027866 0.066*
C25 −0.0056 (2) 0.20478 (15) 0.10149 (11) 0.0479 (3)
H25A −0.042502 0.281655 0.088612 0.057*
H25B 0.052018 0.159214 0.027509 0.057*
C26 0.16431 (19) 0.25464 (12) 0.22421 (10) 0.0342 (2)
H26A 0.289135 0.320050 0.219506 0.041*
H26B 0.211744 0.179045 0.232897 0.041*
C27 0.24348 (16) 0.36510 (10) 0.46538 (10) 0.0262 (2)

1-Hydroxycyclohexanecarboxylic acid. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O11 0.0288 (4) 0.0280 (4) 0.0239 (3) 0.0088 (3) 0.0008 (3) 0.0105 (3)
O12 0.0645 (6) 0.0432 (5) 0.0353 (4) 0.0300 (4) 0.0260 (4) 0.0205 (4)
O13 0.0612 (6) 0.0326 (4) 0.0472 (5) 0.0244 (4) 0.0300 (4) 0.0201 (4)
O21 0.0329 (4) 0.0295 (4) 0.0428 (4) 0.0166 (3) 0.0127 (3) 0.0213 (3)
O22 0.0386 (4) 0.0302 (4) 0.0330 (4) 0.0165 (3) −0.0036 (3) 0.0091 (3)
O23 0.0368 (4) 0.0323 (4) 0.0367 (4) 0.0150 (3) 0.0054 (3) 0.0043 (3)
C11 0.0254 (5) 0.0236 (4) 0.0234 (4) 0.0080 (4) 0.0048 (3) 0.0094 (4)
C12 0.0344 (5) 0.0240 (5) 0.0381 (6) 0.0063 (4) 0.0111 (4) 0.0102 (4)
C13 0.0450 (6) 0.0248 (5) 0.0380 (6) 0.0120 (4) 0.0104 (5) 0.0071 (4)
C14 0.0494 (7) 0.0436 (7) 0.0438 (7) 0.0299 (6) 0.0105 (5) 0.0137 (5)
C15 0.0254 (5) 0.0487 (7) 0.0430 (6) 0.0157 (5) 0.0060 (5) 0.0125 (5)
C16 0.0268 (5) 0.0318 (5) 0.0261 (5) 0.0084 (4) −0.0001 (4) 0.0103 (4)
C17 0.0279 (5) 0.0253 (5) 0.0282 (5) 0.0077 (4) 0.0073 (4) 0.0097 (4)
C21 0.0275 (5) 0.0247 (4) 0.0285 (5) 0.0127 (4) 0.0081 (4) 0.0137 (4)
C22 0.0305 (5) 0.0288 (5) 0.0368 (5) 0.0096 (4) 0.0084 (4) 0.0160 (4)
C23 0.0322 (6) 0.0398 (6) 0.0527 (7) 0.0053 (5) −0.0029 (5) 0.0171 (6)
C24 0.0618 (9) 0.0474 (7) 0.0398 (7) 0.0174 (7) −0.0119 (6) 0.0041 (6)
C25 0.0646 (9) 0.0616 (8) 0.0273 (6) 0.0371 (7) 0.0111 (5) 0.0161 (5)
C26 0.0397 (6) 0.0432 (6) 0.0321 (5) 0.0245 (5) 0.0153 (4) 0.0187 (5)
C27 0.0255 (5) 0.0263 (5) 0.0308 (5) 0.0101 (4) 0.0092 (4) 0.0128 (4)

1-Hydroxycyclohexanecarboxylic acid. Geometric parameters (Å, º)

O11—C11 1.4223 (11) C15—C16 1.5234 (15)
O11—H11 0.8400 C15—H15A 0.9900
O12—C17 1.3030 (13) C15—H15B 0.9900
O12—H12 0.8400 C16—H16A 0.9900
O13—C17 1.2221 (12) C16—H16B 0.9900
O21—C21 1.4280 (11) C21—C26 1.5290 (14)
O21—H21 0.8400 C21—C27 1.5306 (14)
O22—C27 1.3206 (12) C21—C22 1.5339 (14)
O22—H22 0.8400 C22—C23 1.5293 (16)
O23—C27 1.2114 (12) C22—H22A 0.9900
C11—C17 1.5285 (13) C22—H22B 0.9900
C11—C12 1.5321 (14) C23—C24 1.521 (2)
C11—C16 1.5369 (13) C23—H23A 0.9900
C12—C13 1.5282 (15) C23—H23B 0.9900
C12—H12A 0.9900 C24—C25 1.518 (2)
C12—H12B 0.9900 C24—H24A 0.9900
C13—C14 1.5197 (17) C24—H24B 0.9900
C13—H13A 0.9900 C25—C26 1.5256 (17)
C13—H13B 0.9900 C25—H25A 0.9900
C14—C15 1.5187 (18) C25—H25B 0.9900
C14—H14A 0.9900 C26—H26A 0.9900
C14—H14B 0.9900 C26—H26B 0.9900
C11—O11—H11 109.5 O13—C17—C11 121.55 (9)
C17—O12—H12 109.5 O12—C17—C11 114.61 (8)
C21—O21—H21 109.5 O21—C21—C26 106.88 (8)
C27—O22—H22 109.5 O21—C21—C27 108.30 (8)
O11—C11—C17 108.93 (7) C26—C21—C27 111.13 (8)
O11—C11—C12 107.19 (8) O21—C21—C22 110.07 (8)
C17—C11—C12 111.64 (8) C26—C21—C22 110.98 (9)
O11—C11—C16 110.56 (8) C27—C21—C22 109.42 (8)
C17—C11—C16 107.46 (8) C23—C22—C21 111.25 (9)
C12—C11—C16 111.07 (8) C23—C22—H22A 109.4
C13—C12—C11 111.45 (9) C21—C22—H22A 109.4
C13—C12—H12A 109.3 C23—C22—H22B 109.4
C11—C12—H12A 109.3 C21—C22—H22B 109.4
C13—C12—H12B 109.3 H22A—C22—H22B 108.0
C11—C12—H12B 109.3 C24—C23—C22 111.30 (10)
H12A—C12—H12B 108.0 C24—C23—H23A 109.4
C14—C13—C12 111.29 (9) C22—C23—H23A 109.4
C14—C13—H13A 109.4 C24—C23—H23B 109.4
C12—C13—H13A 109.4 C22—C23—H23B 109.4
C14—C13—H13B 109.4 H23A—C23—H23B 108.0
C12—C13—H13B 109.4 C25—C24—C23 111.29 (11)
H13A—C13—H13B 108.0 C25—C24—H24A 109.4
C15—C14—C13 110.73 (9) C23—C24—H24A 109.4
C15—C14—H14A 109.5 C25—C24—H24B 109.4
C13—C14—H14A 109.5 C23—C24—H24B 109.4
C15—C14—H14B 109.5 H24A—C24—H24B 108.0
C13—C14—H14B 109.5 C24—C25—C26 111.49 (11)
H14A—C14—H14B 108.1 C24—C25—H25A 109.3
C14—C15—C16 111.48 (10) C26—C25—H25A 109.3
C14—C15—H15A 109.3 C24—C25—H25B 109.3
C16—C15—H15A 109.3 C26—C25—H25B 109.3
C14—C15—H15B 109.3 H25A—C25—H25B 108.0
C16—C15—H15B 109.3 C25—C26—C21 110.72 (9)
H15A—C15—H15B 108.0 C25—C26—H26A 109.5
C15—C16—C11 110.93 (8) C21—C26—H26A 109.5
C15—C16—H16A 109.5 C25—C26—H26B 109.5
C11—C16—H16A 109.5 C21—C26—H26B 109.5
C15—C16—H16B 109.5 H26A—C26—H26B 108.1
C11—C16—H16B 109.5 O23—C27—O22 123.50 (9)
H16A—C16—H16B 108.0 O23—C27—C21 123.62 (9)
O13—C17—O12 123.82 (9) O22—C27—C21 112.86 (8)
O11—C11—C12—C13 66.73 (11) O21—C21—C22—C23 62.91 (11)
C17—C11—C12—C13 −174.05 (9) C26—C21—C22—C23 −55.19 (11)
C16—C11—C12—C13 −54.14 (12) C27—C21—C22—C23 −178.18 (8)
C11—C12—C13—C14 55.28 (13) C21—C22—C23—C24 54.87 (13)
C12—C13—C14—C15 −56.39 (13) C22—C23—C24—C25 −55.24 (14)
C13—C14—C15—C16 57.12 (13) C23—C24—C25—C26 56.14 (14)
C14—C15—C16—C11 −56.21 (12) C24—C25—C26—C21 −56.31 (13)
O11—C11—C16—C15 −64.41 (11) O21—C21—C26—C25 −64.35 (12)
C17—C11—C16—C15 176.83 (9) C27—C21—C26—C25 177.67 (9)
C12—C11—C16—C15 54.46 (11) C22—C21—C26—C25 55.67 (12)
O11—C11—C17—O13 −21.31 (13) O21—C21—C27—O23 19.06 (13)
C12—C11—C17—O13 −139.49 (10) C26—C21—C27—O23 136.17 (11)
C16—C11—C17—O13 98.50 (11) C22—C21—C27—O23 −100.93 (11)
O11—C11—C17—O12 160.57 (9) O21—C21—C27—O22 −162.34 (8)
C12—C11—C17—O12 42.39 (12) C26—C21—C27—O22 −45.24 (12)
C16—C11—C17—O12 −79.62 (11) C22—C21—C27—O22 77.66 (10)

1-Hydroxycyclohexanecarboxylic acid. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O11—H11···O21i 0.84 1.89 2.7195 (10) 169
O12—H12···O13ii 0.84 1.80 2.6359 (11) 176
O21—H21···O23iii 0.84 1.95 2.7716 (11) 166
O22—H22···O11 0.84 1.84 2.6594 (10) 164
C26—H26A···O13i 0.99 2.58 3.4349 (14) 145

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x, −y+1, −z+1.

References

  1. Becker, H. G. O., Berger, W., Domschke, G., Fanghänel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Müller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. & Zeppenfeld, G. (2000). Organikum – Organisch-Chemisches Grundpraktikum 21st ed. Weinheim: Wiley-VCH.
  2. Betz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o3891.
  3. Betz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4032.
  4. Betz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o3932.
  5. Betz, R. & Klüfers, P. (2007d). Acta Cryst. E63, o4185.
  6. Betz, R., Klüfers, P. & Mangstl, M. M. (2007). Acta Cryst. E63, o4144.
  7. Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct.8, 317–320.
  8. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Dasi, L., Hosten, E. C. & Betz, R. (2024). IUCrData9, x231093. [DOI] [PMC free article] [PubMed]
  10. Ellison, R. D., Johnson, C. K. & Levy, H. A. (1971). Acta Cryst. B27, 333–344.
  11. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  12. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  13. Gade, L. H. (1998). Koordinationschemie, 1st ed. Weinheim: Wiley-VCH.
  14. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  15. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  16. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst.53, 226–235. [DOI] [PMC free article] [PubMed]
  17. >McMurry, J. (2008). Organic Chemistry, 7th ed. Monterey CA: Thomson Brooks Cole.
  18. Pijper, W. P. (1971). Acta Cryst. B27, 344–348.
  19. Schouten, A., Kanters, J. A. & van Krieken, J. (1994). J. Mol. Struct.323, 165–168.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  23. Xu, L., An, G.-W., Yang, X.-D. & Yi, X. (2007). Acta Cryst. E63, o4213.
  24. Yang, J., Hu, C. T., Reiter, E. & Kahr, B. (2021). CrystEngComm23, 2644–2647.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314625009794/hb4541sup1.cif

x-10-x250979-sup1.cif (678.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314625009794/hb4541Isup2.hkl

x-10-x250979-Isup2.hkl (295.2KB, hkl)
x-10-x250979-Isup3.cml (3.2KB, cml)

Supporting information file. DOI: 10.1107/S2414314625009794/hb4541Isup3.cml

CCDC reference: 2500425

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES