Skip to main content
IUCrData logoLink to IUCrData
. 2025 Nov 6;10(Pt 11):x250947. doi: 10.1107/S2414314625009472

Methyl 4,6-O-benzyl­idene-α-d-gluco­pyran­oside monohydrate

Mari Grobbelaar a, Eric Cyriel Hosten a, Richard Betz a,*
Editor: M Bolteb
PMCID: PMC12810282  PMID: 41551126

The title compound is a hydrated, partially protected derivative of d-gluco­pyran­ose. Inter­molecular inter­actions connect the entities of the asymmetric unit to a three-dimensional network.

Keywords: gluco­pyran­ose, crystal structure, hydrogen bonds

Abstract

The title compound, C14H18O6·H2O, is a partially protected derivative of d-gluco­pyran­ose. The asymmetric unit contains one sugar molecule and one water molecule of crystallization. Classical hydrogen bonds of the O—H⋯O type form a cooperative set and are observed next to a C—H⋯O(water) contact, connecting the entities of the asymmetric unit into a three-dimensional network.graphic file with name x-10-x250947-scheme1-3D1.jpg

Structure description

Carbohydrates are an important group of biomolecules and form part of the three macronutrients of the human diet. Natural members of this compound class of polyhy­droxy­carbonyls abound for derivatives with five and six carbon atoms, whose stereochemical diversity is enriched by the ability to form furan­oid and pyran­oid intra­molecular hemiacetal-type addition compounds. As they are the product of natural photosynthesis, they are debated as renewable and carbon-neutral feedstock materials for many industrial processes; however, precisely because of their stereochemical variability, exploiting their synthetic potential often requires a carefully crafted preparative strategy based on protection group chemistry (Lindhorst, 2003).

In connection with the synthesis of coordination compounds, limiting the number of potential donor sites on a polyfunctional carbohydrate is an important measure to ensure the formation of well-defined product species. In connection with a research project around the coordination behaviour of certain hexoses, partially protected derivatives of d-glucose were to be investigated with a specific focus on the trans-orientated hydroxyl groups on the six-membered ring. To this end, methyl-4,6-O-benzyl­idene-α-d-gluco­pyran­oside was synthesized and characterized in the solid state to allow for the comparison of metrical parameters in the free ligand and in coordination compounds. The structure of the title compound has been reported earlier (Tamaru et al., 2001) but no three-dimensional coordinates were deposited. However, structural information is at hand for the anhydrous version of the title compound (Luboradzki et al., 2000) as well as the β-anomer of the carbohydrate (Jessen et al., 2001). The stereoisomeric altro­pyran­oside (Bozo & Vasella, 1992), allo­pyran­oside (Muddasani et al., 1994) and ido­pyran­oside (Chu & Jeffrey, 1965; Liu et al., 1993; Orban et al., 2023) equivalents of the title compound have been the focus of diffraction studies on single crystals previously. The present study is a continuation of our inter­est in structural aspects of coordination compounds of carbohydrate derivatives (Betz & Klüfers, 2007a, 2009; Betz et al., 2007a) as well as polyheterocyclic compounds (Muller et al., 2021; Betz & Klüfers, 2007b,c,d; Betz & Klüfers, 2008a,b; Betz et al., 2007b) and intends to close the gap of missing three-dimensional coordinates for the title compound.

The title compound (Fig. 1) is a twofold protected derivative of d-gluco­pyran­ose with the anomeric hydroxyl group converted into a meth­oxy group (O6–C8) and the hy­droxy­methyl and the adjacent ring-bound hydroxyl group capped by a benzyl­idene protection group. The two trans-orientated hydroxyl groups on the pyran­ose ring remain free. A mol­ecule of water is present in the asymmetric unit. Bond lengths and angles are in good agreement with values reported for comparable compounds whose metrical parameters have been elucidated by means of diffraction studies on single crystals and deposited with the Cambridge Structural Database (Groom et al., 2016). While the meth­oxy group occupies an axial position, the phenyl group is found in an equatorial position. The two free hydroxyl groups adopt a staggered conformation with a O4—C3—C4—O5 torsion angle of 65.17 (16)°. A conformational analysis of the six-membered rings according to Cremer & Pople (1975) shows the pyran­oid ring to adopt a 1C4 (O2CC3) conformation while the six-membered ring established by the condensed benzyl­idene protection group is present in a 4C1 (C7CO1) conformation (Boeyens, 1978).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level).

In the crystal, classical hydrogen bonds of the O—H⋯O type are observed next to a C—H⋯O(water) contact (Table 1) whose range falls by more than 0.1 Å below the sum of van der Waals radii of the atoms participating in them. The hydroxyl group adjacent to the anomeric center establishes a hydrogen bond to the oxygen atom of the meth­oxy group as acceptor, while the second free hydroxyl group involves the oxygen atom of the free water mol­ecule as acceptor. The water mol­ecule exclusively forms hydrogen bonds to the oxygen atom of the second free hydroxyl group, thus giving rise to a cooperative set of hydrogen bonds. The C—H⋯O(water) contact is observed between one of the hydrogen atoms of the meth­oxy group as donor and solvent mol­ecule’s oxygen atom as acceptor. A second C—H⋯O contact between the hydrogen atom of the anomeric center’s methine group and the oxygen atom of the hydroxyl group adjacent to the anomeric center is listed for completeness but could be considered an artefact (or consequence) of the hydrogen bonds established by the neighbouring hydroxyl group resulting in distance shortening between the respective C—H and O motifs involved. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the classical hydrogen bonds require a DDDC11(5) descriptor on the unary level while the C—H⋯O contacts require a DC11(4) descriptor on the same level with the finite pattern reserved for the water-based contact. Furthermore, one C—H⋯π contact is apparent in between the hydrogen atom of the benzyl­idene protection group and the aromatic system that connects the mol­ecules to chains along the crystallographic b axis. π-Stacking is not a stabilizing factor in the crystal structure of the title compound with the shortest distance in between two centers of gravity measured at 4.8475 (13) Å, which is in agreement with the length of the b axis of the unit cell (Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

Cg(1) is the centroid of carbon atoms C21–C26.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O7 0.84 1.86 2.6925 (19) 172
O5—H5A⋯O5i 0.84 2.48 3.1906 (18) 143
O5—H5A⋯O6i 0.84 2.12 2.8486 (18) 145
O7—H7C⋯O4ii 0.84 (1) 2.08 (2) 2.8758 (17) 159 (3)
O7—H7D⋯O4iii 0.83 (1) 2.02 (1) 2.8444 (19) 175 (3)
C5—H5⋯O5i 1.00 2.46 3.299 (2) 141
C8—H8C⋯O7iv 0.98 2.43 3.380 (3) 163
C1—H1⋯Cg(1)v 1.00 2.56 3.516 (2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

Selected inter­molecular contacts, viewed along [010].

Synthesis and crystallization

The compound was obtained following published standard procedures (Becker et al., 2000; Lindhorst, 2003; Evans, 1972). Crystals suitable for the diffraction study were obtained upon recrystallization from boiling propan-2-ol containing water (alcohol:water approximately 95:5).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C14H18O6·H2O
M r 300.30
Crystal system, space group Monoclinic, P21
Temperature (K) 200
a, b, c (Å) 8.9794 (6), 4.8475 (3), 17.3824 (11)
β (°) 103.927 (2)
V3) 734.37 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.50 × 0.13 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.705, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 41341, 3652, 3442
R int 0.033
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.06
No. of reflections 3652
No. of parameters 204
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.16
Absolute structure Flack x determined using 1467 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter −0.17 (16)

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick 2008), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020), SHELXL2019/3 (Sheldrick, 2015) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314625009472/bt4184sup1.cif

x-10-x250947-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314625009472/bt4184Isup2.hkl

x-10-x250947-Isup2.hkl (291.3KB, hkl)

CCDC reference: 2498654

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Methyl 4,6-O-benzylidene-α-D-glucopyranoside monohydrate . Crystal data

C14H18O6·H2O F(000) = 320
Mr = 300.30 Dx = 1.358 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 8.9794 (6) Å Cell parameters from 9923 reflections
b = 4.8475 (3) Å θ = 2.4–28.3°
c = 17.3824 (11) Å µ = 0.11 mm1
β = 103.927 (2)° T = 200 K
V = 734.37 (8) Å3 Rod, colourless
Z = 2 0.50 × 0.13 × 0.07 mm

Methyl 4,6-O-benzylidene-α-D-glucopyranoside monohydrate . Data collection

Bruker APEXII CCD diffractometer 3652 independent reflections
Radiation source: sealed tube 3442 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −11→11
Tmin = 0.705, Tmax = 0.746 k = −6→6
41341 measured reflections l = −23→23

Methyl 4,6-O-benzylidene-α-D-glucopyranoside monohydrate . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.1456P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.25 e Å3
3652 reflections Δρmin = −0.16 e Å3
204 parameters Extinction correction: SHELXL-2019/2 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraints Extinction coefficient: 0.019 (5)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack x determined using 1467 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier map Absolute structure parameter: −0.17 (16)

Methyl 4,6-O-benzylidene-α-D-glucopyranoside monohydrate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The carbon-bound H atoms were placed in calculated positions (C–H 0.98 Å for the methyl group, C–H 0.99 Å for the methylene group and C–H 1.00 Å for the methine groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).The H atoms of the methyl group were allowed to rotate with a fixed angle around the C–O bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2015), with U(H) set to 1.5Ueq(C).The H atoms of the hydroxyl groups were allowed to rotate with a fixed angle around the C–O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2015)), with U(H) set to 1.5Ueq(O).The hydrogen atoms of the water molecule were located on a difference Fourier map and refined freely with the O—H bonds restrained to 0.84 (1) Å and the H···H distance restrained to 1.34 (2) Å.

Methyl 4,6-O-benzylidene-α-D-glucopyranoside monohydrate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.46554 (13) 0.5554 (2) 0.74863 (6) 0.0238 (3)
O2 0.12794 (13) 0.9982 (3) 0.71868 (7) 0.0254 (3)
O3 0.40114 (14) 0.6184 (3) 0.87039 (7) 0.0314 (3)
O4 0.42598 (14) 0.7276 (3) 0.58470 (7) 0.0276 (3)
H4A 0.471173 0.574777 0.588148 0.044 (7)*
O5 0.11857 (16) 0.8527 (3) 0.50945 (7) 0.0326 (3)
H5A 0.073092 0.989590 0.484881 0.043 (7)*
O6 −0.02371 (13) 0.7058 (3) 0.62439 (7) 0.0297 (3)
O7 0.57272 (16) 0.2455 (3) 0.58050 (8) 0.0348 (3)
C1 0.52160 (18) 0.6135 (4) 0.83089 (9) 0.0244 (3)
H1 0.574134 0.796858 0.837146 0.029*
C2 0.36312 (17) 0.7704 (3) 0.71266 (9) 0.0206 (3)
H2 0.418578 0.950973 0.720224 0.025*
C3 0.30499 (17) 0.7132 (3) 0.62492 (9) 0.0206 (3)
H3 0.257645 0.525372 0.617432 0.025*
C4 0.18457 (19) 0.9274 (3) 0.58932 (9) 0.0233 (3)
H4 0.236211 1.110364 0.589884 0.028*
C5 0.06150 (19) 0.9515 (3) 0.63686 (10) 0.0244 (3)
H5 −0.007931 1.109256 0.615502 0.029*
C6 0.23033 (18) 0.7808 (3) 0.75229 (9) 0.0233 (3)
H6 0.174321 0.600724 0.744613 0.028*
C7 0.2933 (2) 0.8339 (4) 0.84008 (10) 0.0312 (4)
H7A 0.344631 1.015908 0.848362 0.037*
H7B 0.208970 0.832990 0.867783 0.037*
C8 −0.1524 (2) 0.7112 (6) 0.65891 (16) 0.0531 (6)
H8A −0.213356 0.877348 0.641402 0.080*
H8B −0.116555 0.712809 0.716801 0.080*
H8C −0.215818 0.547268 0.642267 0.080*
C21 0.63591 (19) 0.3933 (4) 0.86650 (10) 0.0259 (3)
C22 0.7440 (2) 0.3128 (5) 0.82542 (12) 0.0357 (4)
H22 0.740831 0.389879 0.774803 0.043*
C23 0.8563 (2) 0.1213 (5) 0.85770 (13) 0.0411 (5)
H23 0.931025 0.071158 0.829763 0.049*
C24 0.8597 (2) 0.0029 (5) 0.93049 (12) 0.0392 (5)
H24 0.936355 −0.128995 0.952543 0.047*
C25 0.7510 (2) 0.0775 (4) 0.97097 (11) 0.0357 (4)
H25 0.751721 −0.006604 1.020429 0.043*
C26 0.6400 (2) 0.2755 (4) 0.93970 (10) 0.0300 (4)
H26 0.567370 0.329480 0.968532 0.036*
H7C 0.599 (3) 0.242 (7) 0.5371 (11) 0.063 (8)*
H7D 0.527 (3) 0.099 (4) 0.5837 (15) 0.049 (7)*

Methyl 4,6-O-benzylidene-α-D-glucopyranoside monohydrate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0261 (5) 0.0249 (6) 0.0194 (5) 0.0041 (5) 0.0033 (4) −0.0010 (4)
O2 0.0268 (6) 0.0252 (6) 0.0228 (5) 0.0056 (5) 0.0032 (4) −0.0036 (5)
O3 0.0303 (6) 0.0431 (8) 0.0214 (5) 0.0104 (6) 0.0075 (5) 0.0041 (5)
O4 0.0324 (6) 0.0276 (6) 0.0260 (6) 0.0030 (5) 0.0134 (5) 0.0026 (5)
O5 0.0455 (7) 0.0300 (7) 0.0183 (5) 0.0057 (6) −0.0001 (5) 0.0007 (5)
O6 0.0252 (5) 0.0319 (7) 0.0309 (6) −0.0053 (5) 0.0050 (4) −0.0046 (5)
O7 0.0444 (7) 0.0294 (7) 0.0362 (7) −0.0025 (6) 0.0207 (6) −0.0032 (6)
C1 0.0241 (7) 0.0283 (8) 0.0195 (7) 0.0012 (7) 0.0030 (6) −0.0016 (6)
C2 0.0228 (7) 0.0189 (7) 0.0196 (6) 0.0001 (6) 0.0039 (5) −0.0010 (6)
C3 0.0248 (7) 0.0172 (7) 0.0207 (6) −0.0014 (6) 0.0070 (5) −0.0008 (6)
C4 0.0304 (8) 0.0176 (8) 0.0204 (7) −0.0005 (6) 0.0033 (6) 0.0006 (6)
C5 0.0258 (8) 0.0226 (8) 0.0229 (7) 0.0023 (6) 0.0019 (6) −0.0015 (6)
C6 0.0235 (7) 0.0245 (8) 0.0216 (7) 0.0021 (6) 0.0047 (6) −0.0005 (6)
C7 0.0301 (8) 0.0410 (10) 0.0224 (7) 0.0110 (8) 0.0064 (6) −0.0006 (7)
C8 0.0343 (10) 0.0628 (16) 0.0679 (15) −0.0120 (11) 0.0235 (10) −0.0125 (13)
C21 0.0246 (7) 0.0265 (8) 0.0242 (7) −0.0005 (7) 0.0008 (6) −0.0034 (6)
C22 0.0310 (9) 0.0427 (12) 0.0342 (9) 0.0064 (8) 0.0096 (7) 0.0068 (8)
C23 0.0303 (9) 0.0487 (12) 0.0438 (10) 0.0108 (9) 0.0080 (8) −0.0016 (10)
C24 0.0350 (9) 0.0380 (11) 0.0372 (10) 0.0098 (9) −0.0060 (8) −0.0039 (9)
C25 0.0442 (10) 0.0344 (10) 0.0227 (8) 0.0058 (8) −0.0034 (7) −0.0005 (7)
C26 0.0322 (8) 0.0331 (10) 0.0219 (7) 0.0037 (7) 0.0011 (6) −0.0023 (7)

Methyl 4,6-O-benzylidene-α-D-glucopyranoside monohydrate . Geometric parameters (Å, º)

O1—C1 1.4250 (18) C4—C5 1.535 (2)
O1—C2 1.4305 (18) C4—H4 1.0000
O2—C5 1.4218 (19) C5—H5 1.0000
O2—C6 1.4280 (19) C6—C7 1.516 (2)
O3—C1 1.4141 (19) C6—H6 1.0000
O3—C7 1.436 (2) C7—H7A 0.9900
O4—C3 1.4281 (17) C7—H7B 0.9900
O4—H4A 0.8400 C8—H8A 0.9800
O5—C4 1.4191 (19) C8—H8B 0.9800
O5—H5A 0.8400 C8—H8C 0.9800
O6—C5 1.404 (2) C21—C26 1.387 (2)
O6—C8 1.425 (2) C21—C22 1.392 (2)
O7—H7C 0.841 (12) C22—C23 1.386 (3)
O7—H7D 0.832 (13) C22—H22 0.9500
C1—C21 1.507 (2) C23—C24 1.383 (3)
C1—H1 1.0000 C23—H23 0.9500
C2—C3 1.5140 (19) C24—C25 1.382 (3)
C2—C6 1.515 (2) C24—H24 0.9500
C2—H2 1.0000 C25—C26 1.396 (3)
C3—C4 1.519 (2) C25—H25 0.9500
C3—H3 1.0000 C26—H26 0.9500
C1—O1—C2 109.23 (11) O2—C6—C2 109.77 (12)
C5—O2—C6 111.43 (12) O2—C6—C7 109.48 (13)
C1—O3—C7 111.18 (13) C2—C6—C7 108.66 (12)
C3—O4—H4A 109.5 O2—C6—H6 109.6
C4—O5—H5A 109.5 C2—C6—H6 109.6
C5—O6—C8 112.74 (16) C7—C6—H6 109.6
H7C—O7—H7D 107 (2) O3—C7—C6 107.50 (14)
O3—C1—O1 111.33 (12) O3—C7—H7A 110.2
O3—C1—C21 109.72 (13) C6—C7—H7A 110.2
O1—C1—C21 108.27 (13) O3—C7—H7B 110.2
O3—C1—H1 109.2 C6—C7—H7B 110.2
O1—C1—H1 109.2 H7A—C7—H7B 108.5
C21—C1—H1 109.2 O6—C8—H8A 109.5
O1—C2—C3 109.66 (12) O6—C8—H8B 109.5
O1—C2—C6 108.61 (12) H8A—C8—H8B 109.5
C3—C2—C6 110.24 (12) O6—C8—H8C 109.5
O1—C2—H2 109.4 H8A—C8—H8C 109.5
C3—C2—H2 109.4 H8B—C8—H8C 109.5
C6—C2—H2 109.4 C26—C21—C22 119.16 (17)
O4—C3—C2 111.45 (12) C26—C21—C1 122.25 (15)
O4—C3—C4 108.54 (12) C22—C21—C1 118.55 (15)
C2—C3—C4 108.92 (12) C23—C22—C21 120.60 (18)
O4—C3—H3 109.3 C23—C22—H22 119.7
C2—C3—H3 109.3 C21—C22—H22 119.7
C4—C3—H3 109.3 C24—C23—C22 120.16 (19)
O5—C4—C3 108.23 (13) C24—C23—H23 119.9
O5—C4—C5 111.15 (13) C22—C23—H23 119.9
C3—C4—C5 111.52 (12) C25—C24—C23 119.63 (18)
O5—C4—H4 108.6 C25—C24—H24 120.2
C3—C4—H4 108.6 C23—C24—H24 120.2
C5—C4—H4 108.6 C24—C25—C26 120.48 (18)
O6—C5—O2 111.81 (13) C24—C25—H25 119.8
O6—C5—C4 106.76 (13) C26—C25—H25 119.8
O2—C5—C4 111.56 (13) C21—C26—C25 119.94 (17)
O6—C5—H5 108.9 C21—C26—H26 120.0
O2—C5—H5 108.9 C25—C26—H26 120.0
C4—C5—H5 108.9
C7—O3—C1—O1 −62.57 (18) C5—O2—C6—C2 63.05 (16)
C7—O3—C1—C21 177.59 (14) C5—O2—C6—C7 −177.76 (14)
C2—O1—C1—O3 62.49 (17) O1—C2—C6—O2 178.67 (12)
C2—O1—C1—C21 −176.82 (13) C3—C2—C6—O2 −61.17 (16)
C1—O1—C2—C3 179.03 (12) O1—C2—C6—C7 58.97 (17)
C1—O1—C2—C6 −60.45 (15) C3—C2—C6—C7 179.13 (14)
O1—C2—C3—O4 −65.88 (16) C1—O3—C7—C6 59.08 (18)
C6—C2—C3—O4 174.60 (13) O2—C6—C7—O3 −177.12 (13)
O1—C2—C3—C4 174.40 (12) C2—C6—C7—O3 −57.25 (18)
C6—C2—C3—C4 54.88 (16) O3—C1—C21—C26 −16.3 (2)
O4—C3—C4—O5 65.17 (16) O1—C1—C21—C26 −138.00 (16)
C2—C3—C4—O5 −173.32 (13) O3—C1—C21—C22 165.85 (16)
O4—C3—C4—C5 −172.26 (12) O1—C1—C21—C22 44.2 (2)
C2—C3—C4—C5 −50.76 (16) C26—C21—C22—C23 −1.2 (3)
C8—O6—C5—O2 63.6 (2) C1—C21—C22—C23 176.72 (19)
C8—O6—C5—C4 −174.09 (16) C21—C22—C23—C24 1.6 (3)
C6—O2—C5—O6 60.50 (16) C22—C23—C24—C25 −0.3 (3)
C6—O2—C5—C4 −58.97 (17) C23—C24—C25—C26 −1.4 (3)
O5—C4—C5—O6 51.55 (16) C22—C21—C26—C25 −0.4 (3)
C3—C4—C5—O6 −69.32 (16) C1—C21—C26—C25 −178.28 (17)
O5—C4—C5—O2 173.98 (13) C24—C25—C26—C21 1.7 (3)
C3—C4—C5—O2 53.10 (17)

Methyl 4,6-O-benzylidene-α-D-glucopyranoside monohydrate . Hydrogen-bond geometry (Å, º)

Cg(1) is the centroid of carbon atoms C21–C26.

D—H···A D—H H···A D···A D—H···A
O4—H4A···O7 0.84 1.86 2.6925 (19) 172
O5—H5A···O5i 0.84 2.48 3.1906 (18) 143
O5—H5A···O6i 0.84 2.12 2.8486 (18) 145
O7—H7C···O4ii 0.84 (1) 2.08 (2) 2.8758 (17) 159 (3)
O7—H7D···O4iii 0.83 (1) 2.02 (1) 2.8444 (19) 175 (3)
C5—H5···O5i 1.00 2.46 3.299 (2) 141
C8—H8C···O7iv 0.98 2.43 3.380 (3) 163
C1—H1···Cg(1)v 1.00 2.56 3.516 (2) 161

Symmetry codes: (i) −x, y+1/2, −z+1; (ii) −x+1, y−1/2, −z+1; (iii) x, y−1, z; (iv) x−1, y, z; (v) x, y+1, z.

References

  1. Becker, H. G. O., Berger, W., Domschke, G., Fanghänel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Müller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. & Zeppenfeld, G. (2000). Organikum – Organisch-Chemisches Grundpraktikum 21st ed. Weinheim: Wiley-VCH.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Betz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o4132.
  4. Betz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4279.
  5. Betz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o4922.
  6. Betz, R. & Klüfers, P. (2007d). Acta Cryst. E63, o3933.
  7. Betz, R. & Klüfers, P. (2008a). Acta Cryst. E64, o399. [DOI] [PMC free article] [PubMed]
  8. Betz, R. & Klüfers, P. (2008b). Phosphorus Sulfur Silicon183, 1615–1629.
  9. Betz, R. & Klüfers, P. (2009). Inorg. Chem.48, 925–935. [DOI] [PubMed]
  10. Betz, R., Klüfers, P. & Reichvilser, M. M. (2007a). Acta Cryst. E63, o3890. [DOI] [PMC free article] [PubMed]
  11. Betz, R., Klüfers, P. & Reichvilser, M. M. (2007b). Acta Cryst. E63, o3558. [DOI] [PMC free article] [PubMed]
  12. Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct.8, 317–320.
  13. Bozó, E. & Vasella, A. (1992). Helv. Chim. Acta75, 2613–2633.
  14. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  15. Chu, S. S. C. & Jeffrey, G. A. (1965). Acta Cryst.18, 820.
  16. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  17. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  18. Evans, M. E. (1972). Carbohydr. Res.21, 473–475.
  19. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  20. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  21. Jessen, L., Haupt, E. T. K. & Heck, J. (2001). Chem. Eur. J.7, 3791–3797. [DOI] [PubMed]
  22. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  23. Lindhorst, T. K. (2003). Essentials of Carbohydrate Chemistry and Biochemistry 2nd ed. Weinheim: Wiley-VCH.
  24. Liu, H.-M., Sato, Y. & Tsuda, Y. (1993). Chem. Pharm. Bull.41, 491–501.
  25. Luboradzki, R., Gronwald, O., Ikeda, M., Shinkai, S. & Reinhoudt, D. N. (2000). Tetrahedron56, 9595–9599.
  26. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst.53, 226–235. [DOI] [PMC free article] [PubMed]
  27. Muddasani, P. R., Bernet, B. & Vasella, A. (1994). Helv. Chim. Acta77, 334–350.
  28. Muller, K., Hosten, E. C. & Betz, R. (2021). Z. Kristallogr. New Cryst. Struct.236, 353–355.
  29. Orban, I., Ujj, D., Matravolgyi, B., Holczbauer, T. & Rapi, Z. (2023). Symmetry15, 1714.
  30. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  31. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  32. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  33. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  34. Tamaru, S., Luboradzki, R. & Shinkai, S. (2001). Chem. Lett.30, 336–337.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314625009472/bt4184sup1.cif

x-10-x250947-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314625009472/bt4184Isup2.hkl

x-10-x250947-Isup2.hkl (291.3KB, hkl)

CCDC reference: 2498654

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES