Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1990 Oct;58(4):841–856. doi: 10.1016/S0006-3495(90)82430-9

Receptor-mediated cell attachment and detachment kinetics. I. Probabilistic model and analysis.

C Cozens-Roberts 1, D A Lauffenburger 1, J A Quinn 1
PMCID: PMC1281031  PMID: 2174271

Abstract

The kinetics of receptor-mediated cell adhesion to a ligand-coated surface play a key role in many physiological and biotechnology-related processes. We present a probabilistic model of receptor-ligand bond formation between a cell and surface to describe the probability of adhesion in a fluid shear field. Our model extends the deterministic model of Hammer and Lauffenburger (Hammer, D.A., and D.A. Lauffenburger. 1987. Biophys. J. 52:475-487) to a probabilistic framework, in which we calculate the probability that a certain number of bonds between a cell and surface exists at any given time. The probabilistic framework is used to account for deviations from ideal, deterministic behavior, inherent in chemical reactions involving relatively small numbers of reacting molecules. Two situations are investigated: first, cell attachment in the absence of fluid stress; and, second, cell detachment in the presence of fluid stress. In the attachment case, we examine the expected variance in bond formation as a function of attachment time; this also provides an initial condition for the detachment case. Focusing then on detachment, we predict transient behavior as a function of key system parameters, such as the distractive fluid force, the receptor-ligand bond affinity and rate constants, and the receptor and ligand densities. We compare the predictions of the probabilistic model with those of a deterministic model, and show how a deterministic approach can yield some inaccurate results; e.g., it cannot account for temporally continuous cell attach mentor detachment, it can underestimate the time needed for cell attachment, it can overestimate the time required for cell detachment for a given level of force, and it can overestimate the force necessary for cell detachment.

Full text

PDF
841

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albelda S. M., Daise M., Levine E. M., Buck C. A. Identification and characterization of cell-substratum adhesion receptors on cultured human endothelial cells. J Clin Invest. 1989 Jun;83(6):1992–2002. doi: 10.1172/JCI114109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atherton A., Born G. V. Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls. J Physiol. 1972 Apr;222(2):447–474. doi: 10.1113/jphysiol.1972.sp009808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARTHOLOMAY A. F. A stochastic approach to statistical kinetics with application to enzyme kinetics. Biochemistry. 1962 Mar;1:223–230. doi: 10.1021/bi00908a005. [DOI] [PubMed] [Google Scholar]
  4. Bell G. I., Dembo M., Bongrand P. Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J. 1984 Jun;45(6):1051–1064. doi: 10.1016/S0006-3495(84)84252-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  6. Berenson R. J., Bensinger W. I., Kalamasz D., Martin P. Elimination of Daudi lymphoblasts from human bone marrow using avidin-biotin immunoadsorption. Blood. 1986 Feb;67(2):509–515. [PubMed] [Google Scholar]
  7. Berenson R. J., Bensinger W. I., Kalamasz D. Positive selection of viable cell populations using avidin-biotin immunoadsorption. J Immunol Methods. 1986 Jul 11;91(1):11–19. doi: 10.1016/0022-1759(86)90096-7. [DOI] [PubMed] [Google Scholar]
  8. Berenson R. J., Bensinger W. I., Kalamasz D., Schuening F., Deeg H. J., Graham T., Storb R. Engraftment of dogs with Ia-positive marrow cells isolated by avidin-biotin immunoadsorption. Blood. 1987 May;69(5):1363–1367. [PubMed] [Google Scholar]
  9. Berenson R. J., Levitt L. J., Levy R., Miller R. A. Cellular immunoabsorption using monoclonal antibodies. Selective removal of T cells from peripheral blood and bone marrow. Transplantation. 1984 Aug;38(2):136–142. [PubMed] [Google Scholar]
  10. Bongrand P., Capo C., Benoliel A. M., Depieds R. Evaluation of intercellular adhesion with a very simple technique. J Immunol Methods. 1979;28(1-2):133–141. doi: 10.1016/0022-1759(79)90335-1. [DOI] [PubMed] [Google Scholar]
  11. Capo C., Garrouste F., Benoliel A. M., Bongrand P., Ryter A., Bell G. I. Concanavalin-A-mediated thymocyte agglutination: a model for a quantitative study of cell adhesion. J Cell Sci. 1982 Aug;56:21–48. doi: 10.1242/jcs.56.1.21. [DOI] [PubMed] [Google Scholar]
  12. Cozens-Roberts C., Quinn J. A., Lauffenberger D. A. Receptor-mediated adhesion phenomena. Model studies with the Radical-Flow Detachment Assay. Biophys J. 1990 Jul;58(1):107–125. doi: 10.1016/S0006-3495(90)82357-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cozens-Roberts C., Quinn J. A., Lauffenburger D. A. Receptor-mediated cell attachment and detachment kinetics. II. Experimental model studies with the radial-flow detachment assay. Biophys J. 1990 Oct;58(4):857–872. doi: 10.1016/S0006-3495(90)82431-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dejana E., Colella S., Languino L. R., Balconi G., Corbascio G. C., Marchisio P. C. Fibrinogen induces adhesion, spreading, and microfilament organization of human endothelial cells in vitro. J Cell Biol. 1987 May;104(5):1403–1411. doi: 10.1083/jcb.104.5.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dembo M., Torney D. C., Saxman K., Hammer D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond B Biol Sci. 1988 Jun 22;234(1274):55–83. doi: 10.1098/rspb.1988.0038. [DOI] [PubMed] [Google Scholar]
  16. Evans E. A. Detailed mechanics of membrane-membrane adhesion and separation. II. Discrete kinetically trapped molecular cross-bridges. Biophys J. 1985 Jul;48(1):185–192. doi: 10.1016/S0006-3495(85)83771-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hammer D. A., Lauffenburger D. A. A dynamical model for receptor-mediated cell adhesion to surfaces. Biophys J. 1987 Sep;52(3):475–487. doi: 10.1016/S0006-3495(87)83236-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jarrell B. E., Williams S. K., Solomon L., Speicher L., Koolpe E., Radomski J., Carabasi R. A., Greener D., Rosato F. E. Use of an endothelial monolayer on a vascular graft prior to implantation. Temporal dynamics and compatibility with the operating room. Ann Surg. 1986 Jun;203(6):671–678. doi: 10.1097/00000658-198606000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jarrell B. E., Williams S. K., Stokes G., Hubbard F. A., Carabasi R. A., Koolpe E., Greener D., Pratt K., Moritz M. J., Radomski J. Use of freshly isolated capillary endothelial cells for the immediate establishment of a monolayer on a vascular graft at surgery. Surgery. 1986 Aug;100(2):392–399. [PubMed] [Google Scholar]
  20. Kesler K. A., Herring M. B., Arnold M. P., Glover J. L., Park H. M., Helmus M. N., Bendick P. J. Enhanced strength of endothelial attachment on polyester elastomer and polytetrafluoroethylene graft surfaces with fibronectin substrate. J Vasc Surg. 1986 Jan;3(1):58–64. doi: 10.1067/mva.1986.avs0030058. [DOI] [PubMed] [Google Scholar]
  21. Kvalheim G., Fodstad O., Pihl A., Nustad K., Pharo A., Ugelstad J., Funderud S. Elimination of B-lymphoma cells from human bone marrow: model experiments using monodisperse magnetic particles coated with primary monoclonal antibodies. Cancer Res. 1987 Feb 1;47(3):846–851. [PubMed] [Google Scholar]
  22. Lauffenburger D., DeLisi C. Cell surface receptors: physical chemistry and cellular regulation. Int Rev Cytol. 1983;84:269–302. doi: 10.1016/s0074-7696(08)61020-7. [DOI] [PubMed] [Google Scholar]
  23. Martin P. J., Giblett E. R., Hansen J. A. Phenotyping human leukemic T-cell lines: enzyme markers, surface antigens, and cytogenetics. Immunogenetics. 1982;15(4):385–398. doi: 10.1007/BF00364262. [DOI] [PubMed] [Google Scholar]
  24. McClay D. R., Wessel G. M., Marchase R. B. Intercellular recognition: quantitation of initial binding events. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4975–4979. doi: 10.1073/pnas.78.8.4975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mege J. L., Capo C., Benoliel A. M., Bongrand P. Determination of binding strength and kinetics of binding initiation. A model study made on the adhesive properties of P388D1 macrophage-like cells. Cell Biophys. 1986 Apr;8(2):141–160. doi: 10.1007/BF02788478. [DOI] [PubMed] [Google Scholar]
  26. Pratt B. M., Form D., Madri J. A. Endothelial cell-extracellular matrix interactions. Ann N Y Acad Sci. 1985;460:274–288. doi: 10.1111/j.1749-6632.1985.tb51175.x. [DOI] [PubMed] [Google Scholar]
  27. Pratt K. J., Jarrell B. E., Williams S. K., Carabasi R. A., Rupnick M. A., Hubbard F. A. Kinetics of endothelial cell-surface attachment forces. J Vasc Surg. 1988 Apr;7(4):591–599. [PubMed] [Google Scholar]
  28. Ramalanjaona G., Kempczinski R. F., Rosenman J. E., Douville E. C., Silberstein E. B. The effect of fibronectin coating on endothelial cell kinetics in polytetrafluoroethylene grafts. J Vasc Surg. 1986 Feb;3(2):264–272. doi: 10.1067/mva.1986.avs0030264. [DOI] [PubMed] [Google Scholar]
  29. Ramsay N. K., Kersey J. H. Bone marrow purging using monoclonal antibodies. J Clin Immunol. 1988 Mar;8(2):81–88. doi: 10.1007/BF00917894. [DOI] [PubMed] [Google Scholar]
  30. Rosenman J. E., Kempczinski R. F., Berlatzky Y., Pearce W. H., Ramalanjaona G. R., Bjornson H. S. Bacterial adherence to endothelial-seeded polytetrafluoroethylene grafts. Surgery. 1985 Oct;98(4):816–823. [PubMed] [Google Scholar]
  31. Rosenman J. E., Kempczinski R. F., Pearce W. H., Silberstein E. B. Kinetics of endothelial cell seeding. J Vasc Surg. 1985 Nov;2(6):778–784. [PubMed] [Google Scholar]
  32. Rutishauser U., Sachs L. Receptor mobility and the binding of cells to lectin-coated fibers. J Cell Biol. 1975 Jul;66(1):76–85. doi: 10.1083/jcb.66.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schmid-Schoenbein G. W., Fung Y. C., Zweifach B. W. Vascular endothelium-leukocyte interaction; sticking shear force in venules. Circ Res. 1975 Jan;36(1):173–184. doi: 10.1161/01.res.36.1.173. [DOI] [PubMed] [Google Scholar]
  34. Seeger R. C., Vo D. D., Ugelstad J., Reynolds C. P. Removal of neuroblastoma cells from bone marrow with monoclonal antibodies and magnetic immunobeads. Prog Clin Biol Res. 1986;211:285–293. [PubMed] [Google Scholar]
  35. Sklar L. A. Real-time spectroscopic analysis of ligand-receptor dynamics. Annu Rev Biophys Biophys Chem. 1987;16:479–506. doi: 10.1146/annurev.bb.16.060187.002403. [DOI] [PubMed] [Google Scholar]
  36. Sung K. L., Sung L. A., Crimmins M., Burakoff S. J., Chien S. Determination of junction avidity of cytolytic T cell and target cell. Science. 1986 Dec 12;234(4782):1405–1408. doi: 10.1126/science.3491426. [DOI] [PubMed] [Google Scholar]
  37. Thomas P. D., Hampson F. W., Casale J. M., Hunninghake G. W. Neutrophil adherence to human endothelial cells. J Lab Clin Med. 1988 Mar;111(3):286–292. [PubMed] [Google Scholar]
  38. Weigel P. H., Schnaar R. L., Kuhlenschmidt M. S., Schmell E., Lee R. T., Lee Y. C., Roseman S. Adhesion of hepatocytes to immobilized sugars. A threshold phenomenon. J Biol Chem. 1979 Nov 10;254(21):10830–10838. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES