Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1990 Nov;58(5):1127–1132. doi: 10.1016/S0006-3495(90)82455-3

Quantum efficiencies of bacteriorhodopsin photochemical reactions.

A H Xie 1
PMCID: PMC1281059  PMID: 2291939

Abstract

Determination of quantum efficiencies of bacteriorhodopsin (bR) photoreactions is an essential step toward a full understanding of its light-driven proton-pumping mechanism. The bR molecules can be photoconverted into and from a K state, which is stable at 110 K. I measured the absorption spectra of pure bR, and the photoequilibrium states of bR and K generated with 420, 460, 500, 510, 520, 540, 560, 570, 580, 590, and 600 nm illumination at 110 K. The fraction of the K population in the photoequilibrium state, fk, is determined by AbR and AK the absorbances of the bR and K states at the excitation wavelengths, and also by phi 1 and phi 2, the quantum efficiencies for the bR to K and K to bR photoconversion: fK = phi 1 AbR/(phi 1AbR + phi 2Ak). By assuming that the ratio phi 1/phi 2 is the same at two different but close wavelengths, for example 570 and 580 nm, the value of phi 1/phi 2 at 570 and 580 nm was determined to be 0.55 +/- 0.02, and the spectrum of the K state was obtained with the peak absorbance at 607 nm. The values of phi 1/phi 2 at the other excitation wavelengths were then evaluated using the known K spectrum, and show almost no dependence on the excitation wavelength within the main band. The result phi 1/phi 2 = 0.55 +/- 0.02 disagrees with those of many other groups. The advantages of this method over others are its minimal assumptions and its straightforward procedure.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applebury M. L., Peters K. S., Rentzepis P. M. Primary intermediates in the photochemical cycle of bacteriorhodopsin. Biophys J. 1978 Sep;23(3):375–382. doi: 10.1016/S0006-3495(78)85456-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becher B. M., Cassim J. Y. Improved isolation procedures for the purple membrane of Halobacterium halobium. Prep Biochem. 1975;5(2):161–178. doi: 10.1080/00327487508061568. [DOI] [PubMed] [Google Scholar]
  3. Becher B., Ebrey T. G. The quantum efficiency for the photochemical conversion of the purple membrane protein. Biophys J. 1977 Feb;17(2):185–191. doi: 10.1016/S0006-3495(77)85636-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldschmidt C. R., Kalisky O., Rosenfeld T., Ottolenghi M. The quantum efficiency of the bacteriorhodopsin photocycle. Biophys J. 1977 Feb;17(2):179–183. doi: 10.1016/S0006-3495(77)85635-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldschmidt C. R., Ottolenghi M., Korenstein R. On the primary quantum yields in the bacteriorhodopsin photocycle. Biophys J. 1976 Jul;16(7):839–843. doi: 10.1016/S0006-3495(76)85732-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hurley J. B., Ebrey T. G. Energy transfer in the purple membrane of Halobacterium halobium. Biophys J. 1978 Apr;22(1):49–66. doi: 10.1016/S0006-3495(78)85470-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kalisky O., Ottolenghi M., Honig B., Korenstein R. Environmental effects on formation and photoreaction of the M412 photoproduct of bacteriorhodopsin: implications for the mechanism of proton pumping. Biochemistry. 1981 Feb 3;20(3):649–655. doi: 10.1021/bi00506a031. [DOI] [PubMed] [Google Scholar]
  8. Kouyama T., Nasuda-Kouyama A., Ikegami A., Mathew M. K., Stoeckenius W. Bacteriorhodopsin photoreaction: identification of a long-lived intermediate N (P,R350) at high pH and its M-like photoproduct. Biochemistry. 1988 Aug 9;27(16):5855–5863. doi: 10.1021/bi00416a006. [DOI] [PubMed] [Google Scholar]
  9. Lozier R. H., Bogomolni R. A., Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys J. 1975 Sep;15(9):955–962. doi: 10.1016/S0006-3495(75)85875-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lozier R. H., Niederberger W. The photochemical cycle of bacteriorhodopsin. Fed Proc. 1977 May;36(6):1805–1809. [PubMed] [Google Scholar]
  11. Oesterhelt D., Hess B. Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium. Eur J Biochem. 1973 Aug 17;37(2):316–326. doi: 10.1111/j.1432-1033.1973.tb02990.x. [DOI] [PubMed] [Google Scholar]
  12. Rehorek M., Heyn M. P. Binding of all-trans-retinal to the purple membrane. Evidence for cooperativity and determination of the extinction coefficient. Biochemistry. 1979 Oct 30;18(22):4977–4983. doi: 10.1021/bi00589a027. [DOI] [PubMed] [Google Scholar]
  13. Stoeckenius W., Bogomolni R. A. Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem. 1982;51:587–616. doi: 10.1146/annurev.bi.51.070182.003103. [DOI] [PubMed] [Google Scholar]
  14. Stoeckenius W., Lozier R. H., Bogomolni R. A. Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta. 1979 Mar 14;505(3-4):215–278. doi: 10.1016/0304-4173(79)90006-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES