Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Jun;59(6):1284–1289. doi: 10.1016/S0006-3495(91)82343-8

Osmotically induced electrical signals from actin filaments.

H F Cantiello 1, C Patenaude 1, K Zaner 1
PMCID: PMC1281208  PMID: 1873465

Abstract

Actin filaments, F-actin, a major component of the cortical cytoskeleton, play an important role in a variety of cell functions. In this report we have assessed the role of osmotic stress on the electrochemical properties of F-actin. The spontaneous Donnan potential of a polymerized actin solution (5 mg/ml) was -3.93 +/- 1.84 mV, which was linearly reduced by osmotic stress on the order of 1-20 mOsm (0.28 +/- 0.06 mV/mM). Calculated surface charge density was reduced and eventually reversed by increasing the osmotic stress as expected for a phase transition behavior. The electro-osmotic behavior of F-actin disappeared at pH 5.5 and was dependent on its filamentous nature. Furthermore, osmotically stressed F-actin displayed a nonlinear electric response upon application of electric fields on the order of 500-2,000 V/cm. These data indicate that F-actin in solution may display nonideal electro-osmotic properties consistent with ionic "cable" behavior which may be of biological significance in the processing and conduction of electrical signals within the cellular compartment.

Full text

PDF
1284

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collins E. W., Jr, Edwards C. Role of Donnan equilibrium in the resting potentials in glycerol-extracted muscle. Am J Physiol. 1971 Oct;221(4):1130–1133. doi: 10.1152/ajplegacy.1971.221.4.1130. [DOI] [PubMed] [Google Scholar]
  2. Elliott G. F., Bartels E. M. Donnan potential measurements in extended hexagonal polyelectrolyte gels such as muscle. Biophys J. 1982 May;38(2):195–199. doi: 10.1016/S0006-3495(82)84546-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elliott G. F. Measurements of the electric charge and ion-binding of the protein filaments in intact muscle and cornea, with implications for filament assembly. Biophys J. 1980 Oct;32(1):95–97. doi: 10.1016/S0006-3495(80)84927-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ito T., Zaner K. S., Stossel T. P. Nonideality of volume flows and phase transitions of F-actin solutions in response to osmotic stress. Biophys J. 1987 May;51(5):745–753. doi: 10.1016/S0006-3495(87)83401-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KOBAYASI S., ASAI H., OOSAWA F. ELECTRIC BIREFRINGENCE OF ACTIN. Biochim Biophys Acta. 1964 Nov 29;88:528–540. doi: 10.1016/0926-6577(64)90096-8. [DOI] [PubMed] [Google Scholar]
  6. KOBAYASI S. EFFECT OF ELECTRIC FIELD ON F-ACTIN ORIENTED BY FLOW. Biochim Biophys Acta. 1964 Nov 29;88:541–552. [PubMed] [Google Scholar]
  7. Luther P. W., Peng H. B., Lin J. J. Changes in cell shape and actin distribution induced by constant electric fields. Nature. 1983 May 5;303(5912):61–64. doi: 10.1038/303061a0. [DOI] [PubMed] [Google Scholar]
  8. Meggs W. J. Enhanced polymerization of polar macromolecules by an applied electric field with application to mitosis. J Theor Biol. 1990 Jul 24;145(2):245–255. doi: 10.1016/s0022-5193(05)80129-8. [DOI] [PubMed] [Google Scholar]
  9. Millman B. M., Nickel B. G. Electrostatic forces in muscle and cylindrical gel systems. Biophys J. 1980 Oct;32(1):49–63. doi: 10.1016/S0006-3495(80)84915-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Naylor G. R. Average electrostatic potential between the filaments in striated muscle and its relation to a simple Donnan potential. Biophys J. 1982 May;38(2):201–204. doi: 10.1016/S0006-3495(82)84547-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. OVERBEEK J. T. The Donnan equilibrium. Prog Biophys Biophys Chem. 1956;6:57–84. [PubMed] [Google Scholar]
  12. Parodi M., Bianco B., Chiabrera A. Toward molecular electronics. Self-screening of molecular wires. Cell Biophys. 1985 Sep;7(3):215–235. doi: 10.1007/BF02790467. [DOI] [PubMed] [Google Scholar]
  13. Pemrick S. M., Edwards C. Differences in the charge distribution of glycerol-extracted muscle fibers in rigor, relaxation, and contraction. J Gen Physiol. 1974 Nov;64(5):551–567. doi: 10.1085/jgp.64.5.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Robinson K. R. The responses of cells to electrical fields: a review. J Cell Biol. 1985 Dec;101(6):2023–2027. doi: 10.1083/jcb.101.6.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  16. Stossel T. P. Contribution of actin to the structure of the cytoplasmic matrix. J Cell Biol. 1984 Jul;99(1 Pt 2):15s–21s. doi: 10.1083/jcb.99.1.15s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Strzelecka-Gołaszewska H., Pròchniewicz E., Drabikowski W. Interaction of actin with divalent cations. 1. The effect of various cations on the physical state of actin. Eur J Biochem. 1978 Jul 17;88(1):219–227. doi: 10.1111/j.1432-1033.1978.tb12441.x. [DOI] [PubMed] [Google Scholar]
  18. Strzelecka-Gołaszewska H., Pròchniewicz E., Drabikowski W. Interaction of actin with divalent cations. 2. Characterization of protein-metal complexes. Eur J Biochem. 1978 Jul 17;88(1):229–237. doi: 10.1111/j.1432-1033.1978.tb12442.x. [DOI] [PubMed] [Google Scholar]
  19. Tanaka T., Nishio I., Sun S. T., Ueno-Nishio S. Collapse of gels in an electric field. Science. 1982 Oct 29;218(4571):467–469. doi: 10.1126/science.218.4571.467. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES