Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Mar;59(3):654–669. doi: 10.1016/S0006-3495(91)82281-0

Resolution of phospholipid conformational heterogeneity in model membranes by spin-label EPR and frequency-domain fluorescence spectroscopy.

T C Squier 1, J E Mahaney 1, J J Yin 1, C S Lai 1, J R Lakowicz 1
PMCID: PMC1281230  PMID: 1646658

Abstract

We have utilized both fluorescent and nitroxide derivatives of stearic acid as probes of membrane structural heterogeneity in phospholipid vesicles under physiological conditions, as well as conditions of varying ionic strengths and temperatures where spectral heterogeneity has been previously observed and attributed to multiple ionization states of the probes. To identify the source of this spectral heterogeneity, we have utilized complimentary measurements of the relaxation properties (lifetimes) and motion of both (a) spin labeled and anthroyloxy derivatives of stearic acid (i.e., SASL and AS) and (b) a diphenylhexatriene derivative of phosphatidylcholine (DPH-PC) in single component membranes containing dimyristoylphosphatidylcholine (DMPC). We use an 15N stearic-acid spin label for optimal sensitivity to membrane heterogeneity. The lifetime and dynamics of the fluorescent phospholipid analogue DPH-PC (with no ionizable groups over this pH range) were compared with those of AS, allowing us to discriminate between changes in membrane structure and the ionization of the label. The quantum yield and rotational dynamics of DPH-PC are independent of pH, indicating that changes in pH do not affect the conformation of the host phospholipids. However, both EPR spectra of SASL and the lifetime or dynamics of AS are affected profoundly by changes in solution pH. The apparent pKa's of these two probes in DMPC membranes were determined to be near pH 6.3, implying that at physiological pH and ionic strength these stearic-acid labels exist predominantly as a single ionized population in membranes. Therefore, the observed temperature- and ionic-strength-dependent alterations in the spectra of SASL as well as the lifetime or dynamics of AS in DMPC membranes at neutral pH are due to changes in membrane structure rather than the ionization of the probes. The possibility that ionic gradients across biological membranes induce alterations in phospholipid structures, thereby modulating lipid-protein interactions is discussed.

Full text

PDF
654

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcala J. R., Gratton E., Prendergast F. G. Resolvability of fluorescence lifetime distributions using phase fluorometry. Biophys J. 1987 Apr;51(4):587–596. doi: 10.1016/S0006-3495(87)83383-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barratt M. D., Laggner P. The pH-dependence of ESR spectra from nitroxide probes in lecithin dispersions. Biochim Biophys Acta. 1974 Aug 21;363(1):127–133. doi: 10.1016/0005-2736(74)90011-x. [DOI] [PubMed] [Google Scholar]
  3. Bigelow D. J., Thomas D. D. Rotational dynamics of lipid and the Ca-ATPase in sarcoplasmic reticulum. The molecular basis of activation by diethyl ether. J Biol Chem. 1987 Oct 5;262(28):13449–13456. [PubMed] [Google Scholar]
  4. Cevc G., Watts A., Marsh D. Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH, surface electrostatics, ion binding, and head-group hydration. Biochemistry. 1981 Aug 18;20(17):4955–4965. doi: 10.1021/bi00520a023. [DOI] [PubMed] [Google Scholar]
  5. Davoust J., Seigneuret M., Hervé P., Devaux P. F. Collisions between nitrogen-14 and nitrogen-15 spin-labels. 2. Investigations on the specificity of the lipid environment of rhodopsin. Biochemistry. 1983 Jun 21;22(13):3146–3151. doi: 10.1021/bi00282a017. [DOI] [PubMed] [Google Scholar]
  6. Egret-Charlier M., Sanson A., Ptak M. Ionization of fatty acids at the lipid--water interface. FEBS Lett. 1978 May 15;89(2):313–316. doi: 10.1016/0014-5793(78)80244-0. [DOI] [PubMed] [Google Scholar]
  7. Eisinger J., Flores J. Cytosol-membrane interface of human erythrocytes. A resonance energy transfer study. Biophys J. 1983 Mar;41(3):367–379. doi: 10.1016/S0006-3495(83)84448-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellena J. F., Archer S. J., Dominey R. N., Hill B. D., Cafiso D. S. Localizing the nitroxide group of fatty acid and voltage-sensitive spin-labels in phospholipid bilayers. Biochim Biophys Acta. 1988 May 9;940(1):63–70. doi: 10.1016/0005-2736(88)90008-9. [DOI] [PubMed] [Google Scholar]
  9. Engel L. W., Prendergast F. G. Values for and significance of order parameters and "cone angles" of fluorophore rotation in lipid bilayers. Biochemistry. 1981 Dec 22;20(26):7338–7345. doi: 10.1021/bi00529a003. [DOI] [PubMed] [Google Scholar]
  10. Esmann M., Hideg K., Marsh D. Novel spin-labels for the study of lipid-protein interactions. Application to (Na+, K+)-ATPase membranes. Biochemistry. 1988 May 31;27(11):3913–3917. doi: 10.1021/bi00411a004. [DOI] [PubMed] [Google Scholar]
  11. Esmann M., Marsh D. Spin-label studies on the origin of the specificity of lipid-protein interactions in Na+,K+-ATPase membranes from Squalus acanthias. Biochemistry. 1985 Jul 2;24(14):3572–3578. doi: 10.1021/bi00335a027. [DOI] [PubMed] [Google Scholar]
  12. Fajer P., Thomas D. D., Feix J. B., Hyde J. S. Measurement of rotational molecular motion by time-resolved saturation transfer electron paramagnetic resonance. Biophys J. 1986 Dec;50(6):1195–1202. doi: 10.1016/S0006-3495(86)83562-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Faucon J. F., Lakowicz J. R. Anisotropy decay of diphenylhexatriene in melittin-phospholipid complexes by multifrequency phase-modulation fluorometry. Arch Biochem Biophys. 1987 Jan;252(1):245–258. doi: 10.1016/0003-9861(87)90029-4. [DOI] [PubMed] [Google Scholar]
  14. Feix J. B., Popp C. A., Venkataramu S. D., Beth A. H., Park J. H., Hyde J. S. An electron-electron double-resonance study of interactions between [14N]- and [15N]stearic acid spin-label pairs: lateral diffusion and vertical fluctuations in dimyristoylphosphatidylcholine. Biochemistry. 1984 May 8;23(10):2293–2299. doi: 10.1021/bi00305a032. [DOI] [PubMed] [Google Scholar]
  15. Feix J. B., Yin J. J., Hyde J. S. Interactions of 14N:15N stearic acid spin-label pairs: effects of host lipid alkyl chain length and unsaturation. Biochemistry. 1987 Jun 30;26(13):3850–3855. doi: 10.1021/bi00387a017. [DOI] [PubMed] [Google Scholar]
  16. Flewelling R. F., Hubbell W. L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J. 1986 Feb;49(2):541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Godici P. E., Landsberger F. R. The dynamic structure of lipid membranes. A 13C nuclear magnetic resonance study using spin labels. Biochemistry. 1974 Jan 15;13(2):362–368. doi: 10.1021/bi00699a022. [DOI] [PubMed] [Google Scholar]
  18. Griffith O. H., Dehlinger P. J., Van S. P. Shape of the hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological membranes). J Membr Biol. 1974;15(2):159–192. doi: 10.1007/BF01870086. [DOI] [PubMed] [Google Scholar]
  19. Gruner S. M., Lenk R. P., Janoff A. S., Ostro M. J. Novel multilayered lipid vesicles: comparison of physical characteristics of multilamellar liposomes and stable plurilamellar vesicles. Biochemistry. 1985 Jun 4;24(12):2833–2842. doi: 10.1021/bi00333a004. [DOI] [PubMed] [Google Scholar]
  20. Hauser H., Darke A., Phillips M. C. Ion-binding to phospholipids. Interaction of calcium with phosphatidylserine. Eur J Biochem. 1976 Feb 16;62(2):335–344. doi: 10.1111/j.1432-1033.1976.tb10165.x. [DOI] [PubMed] [Google Scholar]
  21. Hauser H., Guyer W., Howell K. Lateral distribution of negatively charged lipids in lecithin membranes. Clustering of fatty acids. Biochemistry. 1979 Jul 24;18(15):3285–3291. doi: 10.1021/bi00582a014. [DOI] [PubMed] [Google Scholar]
  22. Hauser H., Pascher I., Pearson R. H., Sundell S. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta. 1981 Jun 16;650(1):21–51. doi: 10.1016/0304-4157(81)90007-1. [DOI] [PubMed] [Google Scholar]
  23. Honig B. H., Hubbell W. L., Flewelling R. F. Electrostatic interactions in membranes and proteins. Annu Rev Biophys Biophys Chem. 1986;15:163–193. doi: 10.1146/annurev.bb.15.060186.001115. [DOI] [PubMed] [Google Scholar]
  24. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  25. Joseph J., Lai C. S. Synthesis of a spin-labeled phospholipid for studying membrane dynamics in intact mammalian cells. J Lipid Res. 1988 Aug;29(8):1101–1104. [PubMed] [Google Scholar]
  26. Keith A., Horvat D., Snipes W. Spectral characterization of 15N spin labels. Chem Phys Lipids. 1974 Aug;13(1):49–62. doi: 10.1016/0009-3084(74)90041-3. [DOI] [PubMed] [Google Scholar]
  27. Kinosita K., Jr, Kawato S., Ikegami A. A theory of fluorescence polarization decay in membranes. Biophys J. 1977 Dec;20(3):289–305. doi: 10.1016/S0006-3495(77)85550-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lakowicz J. R., Cherek H., Gryczynski I., Joshi N., Johnson M. L. Analysis of fluorescence decay kinetics measured in the frequency domain using distributions of decay times. Biophys Chem. 1987 Oct;28(1):35–50. doi: 10.1016/0301-4622(87)80073-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lakowicz J. R., Cherek H., Maliwal B. P. Time-resolved fluorescence anisotropies of diphenylhexatriene and perylene in solvents and lipid bilayers obtained from multifrequency phase-modulation fluorometry. Biochemistry. 1985 Jan 15;24(2):376–383. doi: 10.1021/bi00323a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lakowicz J. R., Gryczynski I., Cheung H. C., Wang C. K., Johnson M. L. Distance distributions in native and random-coil troponin I from frequency-domain measurements of fluorescence energy transfer. Biopolymers. 1988 May;27(5):821–830. doi: 10.1002/bip.360270509. [DOI] [PubMed] [Google Scholar]
  31. Lakowicz J. R., Laczko G., Gryczynski I., Cherek H. Measurement of subnanosecond anisotropy decays of protein fluorescence using frequency-domain fluorometry. J Biol Chem. 1986 Feb 15;261(5):2240–2245. [PubMed] [Google Scholar]
  32. Lakowicz J. R., Prendergast F. G., Hogen D. Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers. Quantitation of hindered depolarizing rotations. Biochemistry. 1979 Feb 6;18(3):508–519. doi: 10.1021/bi00570a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lange A., Marsh D., Wassmer K. H., Meier P., Kothe G. Electron spin resonance study of phospholipid membranes employing a comprehensive line-shape model. Biochemistry. 1985 Jul 30;24(16):4383–4392. doi: 10.1021/bi00337a020. [DOI] [PubMed] [Google Scholar]
  34. Lipari G., Szabo A. Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys J. 1980 Jun;30(3):489–506. doi: 10.1016/S0006-3495(80)85109-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Marsh D. Electron spin resonance: spin labels. Mol Biol Biochem Biophys. 1981;31:51–142. doi: 10.1007/978-3-642-81537-9_2. [DOI] [PubMed] [Google Scholar]
  36. Marsh D. Molecular motion in phospholipid bilayers in the gel phase: long axis rotation. Biochemistry. 1980 Apr 15;19(8):1632–1637. doi: 10.1021/bi00549a017. [DOI] [PubMed] [Google Scholar]
  37. Mayer L. D., Hope M. J., Cullis P. R., Janoff A. S. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta. 1985 Jul 11;817(1):193–196. doi: 10.1016/0005-2736(85)90084-7. [DOI] [PubMed] [Google Scholar]
  38. Meraldi J. P., Schlitter J. A statistical mechanical treatment of fatty acyl chain order in phospholipid bilayers and correlation with experimental data. B. Dipalmitoyl-3-sn-phosphatidylcholine. Biochim Biophys Acta. 1981 Jul 20;645(2):193–210. doi: 10.1016/0005-2736(81)90190-5. [DOI] [PubMed] [Google Scholar]
  39. Moser M., Marsh D., Meier P., Wassmer K. H., Kothe G. Chain configuration and flexibility gradient in phospholipid membranes. Comparison between spin-label electron spin resonance and deuteron nuclear magnetic resonance, and identification of new conformations. Biophys J. 1989 Jan;55(1):111–123. doi: 10.1016/S0006-3495(89)82784-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pearson R. H., Pascher I. The molecular structure of lecithin dihydrate. Nature. 1979 Oct 11;281(5731):499–501. doi: 10.1038/281499a0. [DOI] [PubMed] [Google Scholar]
  41. Prendergast F. G., Haugland R. P., Callahan P. J. 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry. 1981 Dec 22;20(26):7333–7338. doi: 10.1021/bi00529a002. [DOI] [PubMed] [Google Scholar]
  42. Ptak M., Egret-Charlier M., Sanson A., Bouloussa O. A NMR study of the ionization of fatty acids, fatty amines and N-acylamino acids incorporated in phosphatidylcholine vesicles. Biochim Biophys Acta. 1980 Aug 4;600(2):387–397. doi: 10.1016/0005-2736(80)90442-3. [DOI] [PubMed] [Google Scholar]
  43. Sanson A., Ptak M., Rigaud J. L., Gary-Bobo C. M. An ESR study of the anchoring of spin-labeled stearic acid in lecithin multilayers. Chem Phys Lipids. 1976 Nov;17(4):435–444. doi: 10.1016/0009-3084(76)90045-1. [DOI] [PubMed] [Google Scholar]
  44. Schachter D., Cogan U., Abbott R. E. Asymmetry of lipid dynamics in human erythrocyte membranes studied with permanent fluorophores. Biochemistry. 1982 Apr 27;21(9):2146–2150. doi: 10.1021/bi00538a025. [DOI] [PubMed] [Google Scholar]
  45. Scherer J. R. On the position of the hydro-phobic/philic boundary in lipid bilayers. Biophys J. 1989 May;55(5):957–964. doi: 10.1016/S0006-3495(89)82894-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Seelig A., Seelig J. The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry. 1974 Nov 5;13(23):4839–4845. doi: 10.1021/bi00720a024. [DOI] [PubMed] [Google Scholar]
  47. Seelig J., Macdonald P. M., Scherer P. G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987 Dec 1;26(24):7535–7541. doi: 10.1021/bi00398a001. [DOI] [PubMed] [Google Scholar]
  48. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  49. Squier T. C., Bigelow D. J., Thomas D. D. Lipid fluidity directly modulates the overall protein rotational mobility of the Ca-ATPase in sarcoplasmic reticulum. J Biol Chem. 1988 Jul 5;263(19):9178–9186. [PubMed] [Google Scholar]
  50. Squier T. C., Thomas D. D. Selective detection of the rotational dynamics of the protein-associated lipid hydrocarbon chains in sarcoplasmic reticulum membranes. Biophys J. 1989 Oct;56(4):735–748. doi: 10.1016/S0006-3495(89)82721-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Taylor M. G., Smith I. C. Reliability of nitroxide spin probes in reporting membrane properties: a comparison of nitroxide- and deuterium-labeled steroids. Biochemistry. 1981 Sep 1;20(18):5252–5255. doi: 10.1021/bi00521a024. [DOI] [PubMed] [Google Scholar]
  52. Thulborn K. R., Sawyer W. H. Properties and the locations of a set of fluorescent probes sensitive to the fluidity gradient of the lipid bilayer. Biochim Biophys Acta. 1978 Aug 4;511(2):125–140. doi: 10.1016/0005-2736(78)90308-5. [DOI] [PubMed] [Google Scholar]
  53. Wendoloski J. J., Kimatian S. J., Schutt C. E., Salemme F. R. Molecular dynamics simulation of a phospholipid micelle. Science. 1989 Feb 3;243(4891):636–638. doi: 10.1126/science.2916118. [DOI] [PubMed] [Google Scholar]
  54. Yin J. J., Feix J. B., Hyde J. S. Solution of the nitroxide spin-label spectral overlap problem using pulse electron spin resonance. Biophys J. 1988 Apr;53(4):525–531. doi: 10.1016/S0006-3495(88)83132-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Yin J. J., Pasenkiewicz-Gierula M., Hyde J. S. Lateral diffusion of lipids in membranes by pulse saturation recovery electron spin resonance. Proc Natl Acad Sci U S A. 1987 Feb;84(4):964–968. doi: 10.1073/pnas.84.4.964. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES