Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Apr;59(4):861–872. doi: 10.1016/S0006-3495(91)82298-6

Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas.

D Berk 1, E Evans 1
PMCID: PMC1281251  PMID: 2065190

Abstract

An experimental method and analysis are introduced which provide direct quantitation of the strength of adhesive contact for large agglutinin-bonded regions between macroscopically smooth membrane capsules (e.g., red blood cells). The approach yields intrinsic properties for separation of adherent regions independent of mechanical deformation of the membrane capsules during detachment. Conceptually, the micromechanical method involves one rigid test-capsule surface (in the form of a perfect sphere) held fixed by a micropipette and a second deformable capsule maneuvered with another micropipette to force contact with the test capsule. Only the test capsule is bound with agglutinin so that the maximum number of cross-bridges can be formed without steric interference. Following formation of a large adhesion region by mechanical impingement, the deformable capsule is detached from the rigid capsule surface by progressive aspiration into the micropipette. For the particular case modeled here, the deformable capsule is assumed to be a red blood cell which is preswollen by slight osmotic hydration before the test. The caliber of the detachment pipette is chosen so that the capsule will form a smooth cylindrical "piston" inside the pipette as it is aspirated. Because of the high flexibility of the membrane, the capsule naturally seals against the tube wall by pressurization even though it does not adhere to the glass. This arrangement maintains perfect axial symmetry and prevents the membrane from folding or buckling. Hence, it is possible to rigorously analyze the mechanics of deformation of the cell body to obtain the crucial "transducer" relation between pipette suction force and the membrane tension applied directly at the perimeter of the adhesive contact. Further, the geometry of the cell throughout the detachment process is predicted which provides accurate specification of the contact angle theta c between surfaces at the perimeter of the contact. A full analysis of red cell capsules during detachment has been carried out; however, it is shown that the shear rigidity of the red cell membrane can often be neglected so that the red cell can be treated as if it were an under filled lipid bilayer vesicle. From the analysis, the mechanical leverage factor (1-cos theta c) and the membrane tension at the contact perimeter are determined to provide a complete description of the local mechanics of membrane separation as functions of large-scale experimental variables (e.g., suction force, contact diameter, overall cell length). In a companion paper (Evans, E., D. Berk, A. Leung, and N. Mohandas. 1990. Biophys. J. 59:849-860), this approach was applied to the study of separation of large regions of adhesive contact formed between red blood cells by monoclonal antibodies and lectins.

Full text

PDF
861

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chien S., Sung L. A., Kim S., Burke A. M., Usami S. Determination of aggregation force in rouleaux by fluid mechanical technique. Microvasc Res. 1977 May;13(3):327–333. doi: 10.1016/0026-2862(77)90098-x. [DOI] [PubMed] [Google Scholar]
  2. Chien S., Sung L. A., Simchon S., Lee M. M., Jan K. M., Skalak R. Energy balance in red cell interactions. Ann N Y Acad Sci. 1983;416:190–206. doi: 10.1111/j.1749-6632.1983.tb35189.x. [DOI] [PubMed] [Google Scholar]
  3. Dembo M., Torney D. C., Saxman K., Hammer D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond B Biol Sci. 1988 Jun 22;234(1274):55–83. doi: 10.1098/rspb.1988.0038. [DOI] [PubMed] [Google Scholar]
  4. EASTY G. C., EASTY D. M., AMBROSE E. J. Studies of cellular adhesiveness. Exp Cell Res. 1960 Apr;19:539–548. doi: 10.1016/0014-4827(60)90062-8. [DOI] [PubMed] [Google Scholar]
  5. Evans E. A. Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular cross-bridges. Biophys J. 1985 Jul;48(1):175–183. doi: 10.1016/S0006-3495(85)83770-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans E. A. Detailed mechanics of membrane-membrane adhesion and separation. II. Discrete kinetically trapped molecular cross-bridges. Biophys J. 1985 Jul;48(1):185–192. doi: 10.1016/S0006-3495(85)83771-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evans E. A. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Biophys J. 1980 May;30(2):265–284. doi: 10.1016/S0006-3495(80)85093-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evans E. A., Parsegian V. A. Energetics of membrane deformation and adhesion in cell and vesicle aggregation. Ann N Y Acad Sci. 1983;416:13–33. doi: 10.1111/j.1749-6632.1983.tb35176.x. [DOI] [PubMed] [Google Scholar]
  9. Evans E., Berk D., Leung A., Mohandas N. Detachment of agglutinin-bonded red blood cells. II. Mechanical energies to separate large contact areas. Biophys J. 1991 Apr;59(4):849–860. doi: 10.1016/S0006-3495(91)82297-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans E., Buxbaum K. Affinity of red blood cell membrane for particle surfaces measured by the extent of particle encapsulation. Biophys J. 1981 Apr;34(1):1–12. doi: 10.1016/S0006-3495(81)84834-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evans E., Leung A. Adhesivity and rigidity of erythrocyte membrane in relation to wheat germ agglutinin binding. J Cell Biol. 1984 Apr;98(4):1201–1208. doi: 10.1083/jcb.98.4.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. George J. N., Weed R. I., Reed C. F. Adhesion of human erythrocytes to glass: the nature of the interaction and the effect of serum and plasma. J Cell Physiol. 1971 Feb;77(1):51–59. doi: 10.1002/jcp.1040770107. [DOI] [PubMed] [Google Scholar]
  13. McClay D. R., Wessel G. M., Marchase R. B. Intercellular recognition: quantitation of initial binding events. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4975–4979. doi: 10.1073/pnas.78.8.4975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mohandas N., Hochmuth R. M., Spaeth E. E. Adhesion of red cells to foreign surfaces in the presence of flow. J Biomed Mater Res. 1974 Mar;8(2):119–136. doi: 10.1002/jbm.820080203. [DOI] [PubMed] [Google Scholar]
  15. Parsegian V. A. Long-range physical forces in the biological milieu. Annu Rev Biophys Bioeng. 1973;2:221–255. doi: 10.1146/annurev.bb.02.060173.001253. [DOI] [PubMed] [Google Scholar]
  16. Rand R. P. Interacting phospholipid bilayers: measured forces and induced structural changes. Annu Rev Biophys Bioeng. 1981;10:277–314. doi: 10.1146/annurev.bb.10.060181.001425. [DOI] [PubMed] [Google Scholar]
  17. Skalak R., Zarda P. R., Jan K. M., Chien S. Mechanics of Rouleau formation. Biophys J. 1981 Sep;35(3):771–781. doi: 10.1016/S0006-3495(81)84826-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sung K. L., Sung L. A., Crimmins M., Burakoff S. J., Chien S. Determination of junction avidity of cytolytic T cell and target cell. Science. 1986 Dec 12;234(4782):1405–1408. doi: 10.1126/science.3491426. [DOI] [PubMed] [Google Scholar]
  19. Tozeren A., Sung K. L., Chien S. Theoretical and experimental studies on cross-bridge migration during cell disaggregation. Biophys J. 1989 Mar;55(3):479–487. doi: 10.1016/S0006-3495(89)82841-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Waugh R., Evans E. A. Thermoelasticity of red blood cell membrane. Biophys J. 1979 Apr;26(1):115–131. doi: 10.1016/S0006-3495(79)85239-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES