Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Apr;59(4):880–888. doi: 10.1016/S0006-3495(91)82300-1

Cross-helix separation of tropomyosin molecules in acto-tropomyosin as determined by neutron scattering.

D B Bivin 1, D B Stone 1, D K Schneider 1, R A Mendelson 1
PMCID: PMC1281253  PMID: 1829644

Abstract

The cross-helix separation of Tm molecules in acto-tropomyosin has been determined using neutron scattering. Deuterated Dictyostelium discoideum actin was density matched in a 93% D2O buffer so that effectively only the protonated tropomyosin was "visible" to neutrons. Analysis of the solution scattering pattern in the region of the first oscillation yielded a value for the cross-helix separation of 7.9 +/- 0.3 nm. The implications of this value for the mechanism of the regulation of muscle contraction are discussed in light of recent results by others.

Full text

PDF
880

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASAI H. Electric birefringence of rabbit tropomyosin. J Chromatogr. 1961 Sep;6:182–189. doi: 10.1093/oxfordjournals.jbchem.a127432. [DOI] [PubMed] [Google Scholar]
  2. Carboni J. M., Condeelis J. S. Ligand-induced changes in the location of actin, myosin, 95K (alpha-actinin), and 120K protein in amebae of Dictyostelium discoideum. J Cell Biol. 1985 Jun;100(6):1884–1893. doi: 10.1083/jcb.100.6.1884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Curmi P. M., Stone D. B., Schneider D. K., Spudich J. A., Mendelson R. A. Comparison of the structure of myosin subfragment 1 bound to actin and free in solution. A neutron scattering study using actin made "invisible" by deuteration. J Mol Biol. 1988 Oct 5;203(3):781–798. doi: 10.1016/0022-2836(88)90209-4. [DOI] [PubMed] [Google Scholar]
  4. Eisenberg E., Kielley W. W. Troponin-tropomyosin complex. Column chromatographic separation and activity of the three, active troponin components with and without tropomyosin present. J Biol Chem. 1974 Aug 10;249(15):4742–4748. [PubMed] [Google Scholar]
  5. Engelman D. M. Neutron-scattering measurement of protein pair scattering functions from ribosomes containing deuterated proteins. Methods Enzymol. 1979;59:656–669. doi: 10.1016/0076-6879(79)59120-4. [DOI] [PubMed] [Google Scholar]
  6. Flicker P. F., Phillips G. N., Jr, Cohen C. Troponin and its interactions with tropomyosin. An electron microscope study. J Mol Biol. 1982 Dec 5;162(2):495–501. doi: 10.1016/0022-2836(82)90540-x. [DOI] [PubMed] [Google Scholar]
  7. Gordon D. J., Eisenberg E., Korn E. D. Characterization of cytoplasmic actin isolated from Acanthamoeba castellanii by a new method. J Biol Chem. 1976 Aug 10;251(15):4778–4786. [PubMed] [Google Scholar]
  8. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  9. Lehrer S. S., Morris E. P. Dual effects of tropomyosin and troponin-tropomyosin on actomyosin subfragment 1 ATPase. J Biol Chem. 1982 Jul 25;257(14):8073–8080. [PubMed] [Google Scholar]
  10. McLachlan A. D., Stewart M. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol. 1975 Oct 25;98(2):293–304. doi: 10.1016/s0022-2836(75)80119-7. [DOI] [PubMed] [Google Scholar]
  11. Mendelson R., Kretzschmar K. M. Structure of myosin subfragment 1 from low-angle X-ray scattering. Biochemistry. 1980 Aug 19;19(17):4103–4108. doi: 10.1021/bi00558a031. [DOI] [PubMed] [Google Scholar]
  12. Milligan R. A., Flicker P. F. Structural relationships of actin, myosin, and tropomyosin revealed by cryo-electron microscopy. J Cell Biol. 1987 Jul;105(1):29–39. doi: 10.1083/jcb.105.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Murray J. M., Knox M. K., Trueblood C. E., Weber A. Potentiated state of the tropomyosin actin filament and nucleotide-containing myosin subfragment 1. Biochemistry. 1982 Mar 2;21(5):906–915. doi: 10.1021/bi00534a015. [DOI] [PubMed] [Google Scholar]
  14. Parry D. A. Analysis of the primary sequence of alpha-tropomyosin from rabbit skeletal muscle. J Mol Biol. 1975 Nov 5;98(3):519–535. doi: 10.1016/s0022-2836(75)80084-2. [DOI] [PubMed] [Google Scholar]
  15. Parry D. A., Squire J. M. Structural role of tropomyosin in muscle regulation: analysis of the x-ray diffraction patterns from relaxed and contracting muscles. J Mol Biol. 1973 Mar 25;75(1):33–55. doi: 10.1016/0022-2836(73)90527-5. [DOI] [PubMed] [Google Scholar]
  16. Phillips G. N., Jr Construction of an atomic model for tropomyosin and implications for interactions with actin. J Mol Biol. 1986 Nov 5;192(1):128–131. doi: 10.1016/0022-2836(86)90469-9. [DOI] [PubMed] [Google Scholar]
  17. Phillips G. N., Jr, Fillers J. P., Cohen C. Tropomyosin crystal structure and muscle regulation. J Mol Biol. 1986 Nov 5;192(1):111–131. doi: 10.1016/0022-2836(86)90468-7. [DOI] [PubMed] [Google Scholar]
  18. Stone D. B., Curmi P. M., Mendelson R. A. Preparation of deuterated actin from Dictyostelium discoideum. Methods Cell Biol. 1987;28:215–229. doi: 10.1016/s0091-679x(08)61647-7. [DOI] [PubMed] [Google Scholar]
  19. Tanaka H., Oosawa F. The effect of temperature on the interaction between F-actin and tropomyosin. Biochim Biophys Acta. 1971 Nov 2;253(1):274–283. doi: 10.1016/0005-2728(71)90253-2. [DOI] [PubMed] [Google Scholar]
  20. Wagner P. D., Weeds A. G. Determination of the association of myosin subfragment 1 with actin in the presence of ATP. Biochemistry. 1979 May 29;18(11):2260–2266. doi: 10.1021/bi00578a020. [DOI] [PubMed] [Google Scholar]
  21. Walsh T. P., Trueblood C. E., Evans R., Weber A. Removal of tropomyosin overlap and the co-operative response to increasing calcium concentrations of the acto-subfragment-1 ATPase. J Mol Biol. 1985 Mar 20;182(2):265–269. doi: 10.1016/0022-2836(85)90344-4. [DOI] [PubMed] [Google Scholar]
  22. Williams D. L., Jr, Greene L. E., Eisenberg E. Cooperative turning on of myosin subfragment 1 adenosinetriphosphatase activity by the troponin-tropomyosin-actin complex. Biochemistry. 1988 Sep 6;27(18):6987–6993. doi: 10.1021/bi00418a048. [DOI] [PubMed] [Google Scholar]
  23. Yagi N., Matsubara I. Structural changes in the thin filament during activation studied by X-ray diffraction of highly stretched skeletal muscle. J Mol Biol. 1989 Jul 20;208(2):359–363. doi: 10.1016/0022-2836(89)90396-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES