Abstract
1. The origin of the lumbar sympathetic inhibitory outflow to the large intestine was studied by recording simultaneously changes in colonic motility and efferent firing in the lumbar colonic nerves (l.c.n.) following lesions at various levels of the neuraxis. 2. Multiunit recordings from the l.c.n. usually consisted of irregular grouped discharges which were unrelated to spontaneous colonic contractions or to respiratory or cardiac cycles. The firing was depressed by the administration of ganglionic blocking agents or by decentralization of the inferior mesenteric ganglion, indicating that it was post-ganglionic and primarily central in origin. 3. In the majority of experiments colonic motility and l.c.n. firing were not altered by transection of the cervical (C2-C3) or thoracic (T10-T13) spinal cord. However, in these acute spinal animals destruction of the lumbar ventral roots or the lumbar spinal cord markedly enhanced colonic motility and depressed l.c.n. firing. These findings indicate supraspinal mechanisms are not essential for the generation of the lumbar inhibitory outflow to the colon. 4. Transection of the l.c.n. enhanced colonic motility in animals with an intact neuraxis, in acute spinal animals and in animals where the thoracolumbar sympathetic outflow was blocked. It is concluded that peripheral ganglionic as well as spinal pathways can sustain an inhibitory input to the colon. 5. L.c.n. firing was enchanced by stretching or pinching the proximal colon or small intestine or by electrical stimulation of intestinal afferent fibres (Adelta and C fibres) in the l.c.m. and mesenteric branches of the splanchnic nerves. The reflexes occurred via spinal pathways and were blocked by transection of the lumbar dorsal roots. Spontaneous firing in the l.c.n. was also generated by isolated segments of the lumbar spinal cord; however, this firing occurred independently of traditional reflex pathways since it was uanffected by transection of the lumbar dorsal roots. It is concluded that the spontaneous firing must be generated via ventral root afferent pathways or via endogenous oscillator circuits in the lumbar spinal cord.
Full text
PDF![449](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/9e441edd271d/jphysiol00750-0443.png)
![450](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/96127e19eb03/jphysiol00750-0444.png)
![451](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/d0375e19d4be/jphysiol00750-0445.png)
![452](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/3222cec279b8/jphysiol00750-0446.png)
![453](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/b4d21dc36b30/jphysiol00750-0447.png)
![454](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/d3c369b8da7a/jphysiol00750-0448.png)
![455](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/1b9dd400f3e0/jphysiol00750-0449.png)
![456](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/5f6a251eef34/jphysiol00750-0450.png)
![457](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/7c20ab36b267/jphysiol00750-0451.png)
![458](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/83df7724fbec/jphysiol00750-0452.png)
![459](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/8358a47f5dcc/jphysiol00750-0453.png)
![460](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/dd9b4f14a010/jphysiol00750-0454.png)
![461](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/d8a1e59a1658/jphysiol00750-0455.png)
![462](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/85d1ef0718e3/jphysiol00750-0456.png)
![463](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/e4824190ceef/jphysiol00750-0457.png)
![464](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/9e4e4c6a4ec7/jphysiol00750-0458.png)
![465](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/2ccd1aab7fbd/jphysiol00750-0459.png)
![466](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/efdbe3502531/jphysiol00750-0460.png)
![467](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/bd32e6610145/jphysiol00750-0461.png)
![468](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2587/1281379/3b6ef08d98fd/jphysiol00750-0462.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEACHAM W. S., PERL E. R. CHARACTERISTICS OF A SPINAL SYMPATHETIC REFLEX. J Physiol. 1964 Oct;173:431–448. doi: 10.1113/jphysiol.1964.sp007466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clifton G. L., Coggeshall R. E., Vance W. H., Willis W. D. Receptive fields of unmyelinated ventral root afferent fibres in the cat. J Physiol. 1976 Apr;256(3):573–600. doi: 10.1113/jphysiol.1976.sp011340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coggeshall R. E., Coulter J. D., Willis W. D., Jr Unmyelinated axons in the ventral roots of the cat lumbosacral enlargement. J Comp Neurol. 1974 Jan 1;153(1):39–58. doi: 10.1002/cne.901530105. [DOI] [PubMed] [Google Scholar]
- Coggeshall R. E., Coulter J. D., Willis W. D., Jr Unmyelinated fibers in the ventral root. Brain Res. 1973 Jul 16;57(1):229–233. doi: 10.1016/0006-8993(73)90582-9. [DOI] [PubMed] [Google Scholar]
- Cohen M. I., Gootman P. M. Periodicities in efferent discharge of splanchnic nerve of the cat. Am J Physiol. 1970 Apr;218(4):1092–1101. doi: 10.1152/ajplegacy.1970.218.4.1092. [DOI] [PubMed] [Google Scholar]
- Crowcroft P. J., Holman M. E., Szurszewski J. H. Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea-pig. J Physiol. 1971 Dec;219(2):443–461. doi: 10.1113/jphysiol.1971.sp009671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Groat W. C., Krier J. The sacral parasympathetic reflex pathway regulating colonic motility and defaecation in the cat. J Physiol. 1978 Mar;276:481–500. doi: 10.1113/jphysiol.1978.sp012248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Groat W. C., Lalley P. M. Reflex firing in the lumbar sympathetic outflow to activation of vesical afferent fibres. J Physiol. 1972 Oct;226(2):289–309. doi: 10.1113/jphysiol.1972.sp009985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Groat W. C. Nervous control of the urinary bladder of the cat. Brain Res. 1975 Apr 11;87(2-3):201–211. doi: 10.1016/0006-8993(75)90417-5. [DOI] [PubMed] [Google Scholar]
- Edvardsen P. Nervous control of urinary bladder in cats. I. The collecting phase. Acta Physiol Scand. 1968 Jan-Feb;72(1):157–171. doi: 10.1111/j.1748-1716.1968.tb03838.x. [DOI] [PubMed] [Google Scholar]
- Fedina L., Katunskii A. Y., Khayutin V. M., Mitsányi A. Responses of renal sympathetic nerves to stimulation of afferent A and C fibres of tibial and mesenterial nerves. Acta Physiol Acad Sci Hung. 1966;29(2):157–175. [PubMed] [Google Scholar]
- Fernandez de Molina A., Perl E. R. Sympathetic activity and the systemic circulation in the spinal cat. J Physiol. 1965 Nov;181(1):82–102. doi: 10.1113/jphysiol.1965.sp007747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franz D. N., Evans M. H., Perl E. R. Characteristics of viscerosympathetic reflexes in the spinal cat. Am J Physiol. 1966 Dec;211(6):1292–1298. doi: 10.1152/ajplegacy.1966.211.6.1292. [DOI] [PubMed] [Google Scholar]
- Gardette B., Gonella J. Etude électromyographique in vivo de la commande nerveuse orthosympathique du côlon chez le chat. J Physiol (Paris) 1974;68(6):671–692. [PubMed] [Google Scholar]
- Garrett J. R., Howard E. R., Jones W. The internal anal sphincter in the cat: a study of nervous mechanisms affecting tone and reflex activity. J Physiol. 1974 Nov;243(1):153–166. doi: 10.1113/jphysiol.1974.sp010747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garry R. C. The nervous control of the caudal region of the large bowel in the cat. J Physiol. 1933 Mar 15;77(4):422–431. doi: 10.1113/jphysiol.1933.sp002977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hultén L., Lindhagen J., Lundgren O. Sympathetic nervous control of intramural blood flow in the feline and human intestines. Gastroenterology. 1977 Jan;72(1):41–48. [PubMed] [Google Scholar]
- JOHANSSON B., LANGSTON J. B. REFLEX INFLUENCE OF MESENTERIC AFFERENTS ON RENAL, INTESTINAL AND MUSCLE BLOOD FLOW AND ON INTESTINAL MOTILITY. Acta Physiol Scand. 1964 Aug;61:400–412. [PubMed] [Google Scholar]
- Johansson B., Jonsson O., Ljung B. Tonic supraspinal mechanisms influencing the intestino--intestinal inhibitory reflex. Acta Physiol Scand. 1968 Jan-Feb;72(1):200–204. doi: 10.1111/j.1748-1716.1968.tb03842.x. [DOI] [PubMed] [Google Scholar]
- Langley J. N., Anderson H. K. On the Innervation of the Pelvic and Adjoining Viscera: Part I. The Lower Portion of the Intestine. J Physiol. 1895 May 20;18(1-2):67–105. doi: 10.1113/jphysiol.1895.sp000558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannard A., Polosa C. Analysis of background firing of single sympathetic preganglionic neurons of cat cervical nerve. J Neurophysiol. 1973 May;36(3):398–408. doi: 10.1152/jn.1973.36.3.398. [DOI] [PubMed] [Google Scholar]
- McCall R. B., Gebber G. L. Brain stem and spinal synchronization of sympathetic nervous discharge. Brain Res. 1975 May 16;89(1):139–143. doi: 10.1016/0006-8993(75)90141-9. [DOI] [PubMed] [Google Scholar]
- Mikeladze A. L. Endings of afferent nerve fibers in lumbosacral region of spinal cord. Fed Proc Transl Suppl. 1966 Mar-Apr;25(2):211–216. [PubMed] [Google Scholar]
- Pahlin P. E., Kewenter J. Sympathetic nervous control of cat ileocecal sphincter. Am J Physiol. 1976 Aug;231(2):296–305. doi: 10.1152/ajplegacy.1976.231.2.296. [DOI] [PubMed] [Google Scholar]
- Polosa C. Spontaneous activity of sympathetic preganglionic neurons. Can J Physiol Pharmacol. 1968 Nov;46(6):887–896. doi: 10.1139/y68-138. [DOI] [PubMed] [Google Scholar]
- Preiss G., Polosa C. Patterns of sympathetic neuron activity associated with Mayer waves. Am J Physiol. 1974 Mar;226(3):724–730. doi: 10.1152/ajplegacy.1974.226.3.724. [DOI] [PubMed] [Google Scholar]
- SALMOIRAGHI G. C., von BAUMGARTEN Intracellular potentials from respiratory neurones in brain-stem of cat and mechanism of rhythmic respiration. J Neurophysiol. 1961 Mar;24:203–218. doi: 10.1152/jn.1961.24.2.203. [DOI] [PubMed] [Google Scholar]
- Szurszewski J. H., Weems W. A. A study of peripheral input to and its control by post-ganglionic neurones of the inferior mesenteric ganglion. J Physiol. 1976 Apr;256(3):541–556. doi: 10.1113/jphysiol.1976.sp011338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyman R. J. Neural generation of the breathing rhythm. Annu Rev Physiol. 1977;39:417–448. doi: 10.1146/annurev.ph.39.030177.002221. [DOI] [PubMed] [Google Scholar]
- de Groat W. C., Lalley P. M. Reflex sympathetic firing in response to electrical stimulation of the carotid sinus nerve in the cat. Brain Res. 1974 Nov 8;80(1):17–40. doi: 10.1016/0006-8993(74)90721-5. [DOI] [PubMed] [Google Scholar]
- de Groat W. C., Theobald R. J. Reflex activation of sympathetic pathways to vesical smooth muscle and parasympathetic ganglia by electrical stimulation of vesical afferents. J Physiol. 1976 Jul;259(1):223–237. doi: 10.1113/jphysiol.1976.sp011463. [DOI] [PMC free article] [PubMed] [Google Scholar]