Abstract
1. Reabsorption of glucose, sodium, total solute (osmoles) and water in the rat proximal tubule (pars convoluta) were studied by free-flow micropuncture at normal (saline-infused), suppressed (saline with phlorizin) and elevated (glucose infusion) glucose reabsorption rates. 2. Phlorizin completely inhibited net glucose reabsorption, approximately halved reabsorption of sodium, total solutes and water, and reduced single nephron glomerular filtration rate (SNGFR). 3. In saline and glucose-infused groups, there were no significant differences between SNGFR nor between reabsorptions (fractional and absolute) of either sodium, total solute or water, which were uniformly distributed along segments assessible to micropuncture. 4. Glucose reabsorptive capacity existed along the entire pars convoluta, with highest reabsorptive rates in convolutions closest to the glomerulus (in saline-infused rats, 90% fractional reabsorption at 2 mm, over 95% at end pars convoluta; in glucose-infused rats, 55 and 90%, respectively). 5. In saline and glucose infused rats, a significant correlation existed between net glucose and sodium reabsorption, but the regression slopes differed and correlations became non-significant when the reabsorptive fluxes were factored by SNGFR. 6. For all groups, the majority of tubular fluid (TF) concentrations of osmoles and sodium were lower than those in plasma (over-all mean TFosm)Posm = 0.973 +/- 0.004, P less than 0.001; TFNa /PNa = 0.964 +/- 0.005, P less than 0.001). 7. Correspondingly, calculated osmolal and sodium concentrations in the reabsorbate were greater than those in plasma, and were significantly correlated with distance to puncture site with maximal values in the most proximal convolutions (for osmolality, approximately +79 m-osmole kg-1 water at 1 mm).
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett C. M., Brenner B. M., Berliner R. W. Micropuncture study of nephron function in the rhesus monkey. J Clin Invest. 1968 Jan;47(1):203–216. doi: 10.1172/JCI105710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop J. H., Elegbe R., Green R., Thomas S. Effects of phlorizin on glucose, water and sodium handling by the rat kidney. J Physiol. 1978 Feb;275:467–480. doi: 10.1113/jphysiol.1978.sp012201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop J. H., Green R., Thomas S. Effects of glucose on water and sodium reabsorption in the proximal convoluted tubule of rat kidney. J Physiol. 1978 Feb;275:481–493. doi: 10.1113/jphysiol.1978.sp012202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
- Cardinal J., Lutz M. D., Burg M. B., Orloff J. Lack of relationship of potential difference to fluid absorption in the proximal renal tubule. Kidney Int. 1975 Feb;7(2):94–102. doi: 10.1038/ki.1975.14. [DOI] [PubMed] [Google Scholar]
- Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frasch W., Frohnert P. P., Bode F., Baumann K., Kinne R. Competitive inhibition of phlorizin binding by D-glucose and the influence of sodium: a study on isolated brush border membrane of rat kidney. Pflugers Arch. 1970;320(3):265–284. doi: 10.1007/BF00587458. [DOI] [PubMed] [Google Scholar]
- Frohnert P. P., Höhmann B., Zwiebel R., Baumann K. Free flow micropuncture studies of glucose transport in the rat nephron. Pflugers Arch. 1970;315(1):66–85. doi: 10.1007/BF00587238. [DOI] [PubMed] [Google Scholar]
- Frömter E., Gessner K. Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pflugers Arch. 1974;351(1):85–98. doi: 10.1007/BF00603513. [DOI] [PubMed] [Google Scholar]
- GOTTSCHALK C. W. RENAL TUBULAR FUNCTION: LESSONS FROM MICROPUNCTURE. Harvey Lect. 1963;58:99–124. [PubMed] [Google Scholar]
- Green R., Giebisch G. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride. Am J Physiol. 1975 Nov;229(5):1205–1215. doi: 10.1152/ajplegacy.1975.229.5.1205. [DOI] [PubMed] [Google Scholar]
- Györy A. Z., Lingard J. M., Young J. A. Proceedings: Proximal tubular inhomogeneity for neutral amino acids in the rat kidney. J Physiol. 1974 Sep;241(2):126P–127P. [PubMed] [Google Scholar]
- Jamison R. L. Micropuncture study of segments of thin loop of Henle in the rat. Am J Physiol. 1968 Jul;215(1):236–242. doi: 10.1152/ajplegacy.1968.215.1.236. [DOI] [PubMed] [Google Scholar]
- Kokko J. P. Proximal tubule potential difference. Dependence on glucose on glucose, HCO 3 , and amino acids. J Clin Invest. 1973 Jun;52(6):1362–1367. doi: 10.1172/JCI107308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lechène C., Morel F., Guinnebault M., De Rouffignac C. Etude par microponction de l'élaboration de l'urine. I. Chez le rat dans différents états de diurèse. Nephron. 1969;6(4):457–477. doi: 10.1159/000179745. [DOI] [PubMed] [Google Scholar]
- Lingard J., Rumrich G., Young J. A. Reabsorption of L-glutamine and L-histidine from various regions of the rat proximal convolution studied by stationary microperfusion: evidence that the proximal convolution is not homogeneous. Pflugers Arch. 1973 Jul 25;342(1):1–12. doi: 10.1007/BF00593246. [DOI] [PubMed] [Google Scholar]
- Loeschke K., Baumann K., Renschler H., Ullrich K. J. Differenzierung zwischen aktiver und passiver Komponente des D-Glucosetrnsports am proximalen Konvolut der Rattenniere. Pflugers Arch. 1969;305(2):118–138. doi: 10.1007/BF00585840. [DOI] [PubMed] [Google Scholar]
- Morel F., de Rouffignac C., Marsh D., Guinnebault M., Lechene C. Etude par microponction de l'élaboration de l'urine. II. Chez le psammomys non diurétique. Nephron. 1969;6(5):553–570. doi: 10.1159/000179755. [DOI] [PubMed] [Google Scholar]
- Persson E., Ulfendahl H. R. Water permeability in rat proximal tubules. Acta Physiol Scand. 1970 Mar;78(3):353–363. doi: 10.1111/j.1748-1716.1970.tb04671.x. [DOI] [PubMed] [Google Scholar]
- Rector F. C., Jr, Brunner F. P., Sellman J. C., Seldin D. W. Pitfalls in the use of micropuncture for the localization of diuretic action. Ann N Y Acad Sci. 1966 Nov 22;139(2):400–407. doi: 10.1111/j.1749-6632.1966.tb41213.x. [DOI] [PubMed] [Google Scholar]
- Silverman M. Glucose transport in the kidney. Biochim Biophys Acta. 1976 Dec 14;457(3-4):303–351. doi: 10.1016/0304-4157(76)90003-4. [DOI] [PubMed] [Google Scholar]
- Stolte H., Hare D., Boylan J. W. D-glucose and fluid reabsorption in proximal surface tubule of the rat kidney. Pflugers Arch. 1972;334(3):193–206. doi: 10.1007/BF00626223. [DOI] [PubMed] [Google Scholar]
- Tune B. M., Burg M. B. Glucose transport by proximal renal tubules. Am J Physiol. 1971 Aug;221(2):580–585. doi: 10.1152/ajplegacy.1971.221.2.580. [DOI] [PubMed] [Google Scholar]
- Tune B. M., Burg M. B., Patlak C. S. Characteristics of p-aminohippurate transport in proximal renal tubules. Am J Physiol. 1969 Oct;217(4):1057–1063. doi: 10.1152/ajplegacy.1969.217.4.1057. [DOI] [PubMed] [Google Scholar]
- Ullrich K. J. Renal tubular mechanisms of organic solute transport. Kidney Int. 1976 Feb;9(2):134–148. doi: 10.1038/ki.1976.17. [DOI] [PubMed] [Google Scholar]
- Weinman E. J., Suki W. N., Eknoyan G. D-Glucose enhancement of water reabsorption in proximal tubule of the rat kidney. Am J Physiol. 1976 Sep;231(3):777–780. doi: 10.1152/ajplegacy.1976.231.3.777. [DOI] [PubMed] [Google Scholar]
- Wen S. F. Micropuncture studies of glucose transport in the dog: mechanism of renal glycosuria. Am J Physiol. 1976 Aug;231(2):468–475. doi: 10.1152/ajplegacy.1976.231.2.468. [DOI] [PubMed] [Google Scholar]
- Wright F. S., Giebisch G. Glomerular filtration in single nephrons. Kidney Int. 1972 Apr;1(4):201–209. doi: 10.1038/ki.1972.30. [DOI] [PubMed] [Google Scholar]
- von Baeyer H., von Conta C., Haeberle D., Deetjen P. Determination of transport constants for glucose in proximal tubules of the rat kidney. Pflugers Arch. 1973 Nov 8;343(4):273–286. doi: 10.1007/BF00595815. [DOI] [PubMed] [Google Scholar]