Abstract
1. The change in the ability to sustain a load and the change in the series elasticity in the anterior byssal retractor muscle (a.b.r.m.) of Mytilus edulis during isotonic shortening was studied by recording the length changes following step changes in load. 2. When a load of 0.7--0.9 P0 WAs applied after a period of isotonic shortening under a small load (0.05--0.1 P0), the muscle fibres showed continuous isotonic lengthening, indicating a reduction in the ability to sustain a load during isotonic shortening. 3. Following the application of a load of 0.3--0.6 P0 during isotonic shortening under a small load, the fibres exhibited a transient isotonic lengthening before starting to shorten isotonically, indicating some degree of restoration in the load-sustaining ability after the step increase in load. 4. No appreciable reduction in the load-sustaining ability was observed during isotonic shortening under a large load (more than 0.7 P0). 5. The load--extension curves of the series elasticity determined during isotonic shortening were found to be scaled down roughly in proportion to the isotonic load. 6. The stiffness of the muscle fibres during the isotonic shortening approached a certain finite value, when the isotonic load tended to zero. If the stiffness was measured during the development of isometric tension, the stiffness--isometric tension curve extrapolated towards the origin. 7. High-speed cinematography during the step change in load indicated a fairly uniform distribution of the series elasticity along the length of the preparation. 8. These results are discussed in relation to the sliding filament model of muscle contraction.
Full text
PDF














Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABBOTT B. C., LOWY J. Contraction in mulluscan smooth muscle. J Physiol. 1958 May 28;141(3):385–397. doi: 10.1113/jphysiol.1958.sp005982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atsumi S., Sugi H. Localization of calcium-accumulating structures in the anterior byssal retractor muscle of Mytilus edulis and their role in the regulation of active and catch contractions. J Physiol. 1976 Jun;257(3):549–560. doi: 10.1113/jphysiol.1976.sp011384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bressler B. H., Clinch N. F. The compliance of contracting skeletal muscle. J Physiol. 1974 Mar;237(3):477–493. doi: 10.1113/jphysiol.1974.sp010493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
- Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
- Huxley A. F. The activation of striated muscle and its mechanical response. Proc R Soc Lond B Biol Sci. 1971 Jun 15;178(1050):1–27. doi: 10.1098/rspb.1971.0049. [DOI] [PubMed] [Google Scholar]
- JEWELL B. R. The nature of the phasic and the tonic responses of the anterior byssal retractor muscle of Mytilus. J Physiol. 1959 Dec;149:154–177. doi: 10.1113/jphysiol.1959.sp006332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JEWELL B. R., WILKIE D. R. An analysis of the mechanical components in frog's striated muscle. J Physiol. 1958 Oct 31;143(3):515–540. doi: 10.1113/jphysiol.1958.sp006075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krueger J. W., Pollack G. H. Myocardial sarcomere dynamics during isometric contraction. J Physiol. 1975 Oct;251(3):627–643. doi: 10.1113/jphysiol.1975.sp011112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWY J., HANSON J. Ultrastructure of invertebrate smooth muscles. Physiol Rev Suppl. 1962 Jul;5:34–47. [PubMed] [Google Scholar]
- Lowy J., Vibert P. J., Haselgrove J. C., Poulsen F. R. The structure of the myosin elements in vertebrate smooth muscles. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):191–196. doi: 10.1098/rstb.1973.0022. [DOI] [PubMed] [Google Scholar]
- Millman B. M., Elliott G. F. X-ray diffraction from contracting molluscan muscle. Nature. 1965 May 22;206(4986):824–825. doi: 10.1038/206824a0. [DOI] [PubMed] [Google Scholar]
- Nonomura Y. Fine structure of the thick filament in molluscan catch muscle. J Mol Biol. 1974 Sep 15;88(2):445–455. doi: 10.1016/0022-2836(74)90494-x. [DOI] [PubMed] [Google Scholar]
- Podolsky R. J., Nolan A. C., Zaveler S. A. Cross-bridge properties derived from muscle isotonic velocity transients. Proc Natl Acad Sci U S A. 1969 Oct;64(2):504–511. doi: 10.1073/pnas.64.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podolsky R. J., Teichholz L. E. The relation between calcium and contraction kinetics in skinned muscle fibres. J Physiol. 1970 Nov;211(1):19–35. doi: 10.1113/jphysiol.1970.sp009263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somlyo A. P., Devine C. E., Somlyo A. V., Rice R. V. Filament organization in vertebrate smooth muscle. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):223–229. doi: 10.1098/rstb.1973.0027. [DOI] [PubMed] [Google Scholar]
- Szent-Györgyi A. G., Cohen C., Kendrick-Jones J. Paramyosin and the filaments of molluscan "catch" muscles. II. Native filaments: isolation and characterization. J Mol Biol. 1971 Mar 14;56(2):239–258. doi: 10.1016/0022-2836(71)90462-1. [DOI] [PubMed] [Google Scholar]
- Tameyasu T., Sugi H. The series elastic component and the force-velocity relation in the anterior byssal retractor muscle of Mytilus edulis during active and catch contractions. J Exp Biol. 1976 Apr;64(2):497–510. doi: 10.1242/jeb.64.2.497. [DOI] [PubMed] [Google Scholar]
- Twarog B. M., Dewey M. M., Hidaka T. The structure of Mytilus smooth muscle and the electrical constants of the resting muscle. J Gen Physiol. 1973 Feb;61(2):207–221. doi: 10.1085/jgp.61.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wise R. M., Rondinone J. F., Briggs F. N. Effect of pCa on series-elastic component of glycerinated skeletal muscle. Am J Physiol. 1973 Mar;224(3):576–579. doi: 10.1152/ajplegacy.1973.224.3.576. [DOI] [PubMed] [Google Scholar]