Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1979 Feb;287:67–80. doi: 10.1113/jphysiol.1979.sp012646

On the effect of ionophoretically applied dopamine on salivary gland cells of Nauphoeta cinerea.

J G Blackman, B L Ginsborg, C R House
PMCID: PMC1281482  PMID: 219185

Abstract

1. Responses to ionophoretically applied dopamine ('ionophoretic responses') have been recorded with an intracellular micro-electrode from acini of isolated salivary glands of the cockroach, Nauphoeta cinerea. They resembled responses to nerve stimulation ('neural responses') but they usually decayed more slowly and were sometimes more rapid in onset. 2. As already described for neural resonses, ionophoretic responses (i) included a secondary phase of depolarization (although more rarely than neural responses), (ii) increased in duration with increased amplitude and (iii) when small, added superlinearly. These features therefore reflect post-synaptic processes. By contrast, tachyphylaxis was much more marked for neural responses and is therefore mainly of presynaptic origin. 3. Ionophoretic and neural responses were affected similarly by increase in temperature. The times-to-peak of both decreased with values for Q10 of about 3. 4. The differences between the onset and decay of ionophoretic and neural responses can probably be explained by the inherently different conditions of application of the agonist. The similarities therfore provide further support for dopamine as the neurotransmitter.

Full text

PDF
67

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascher P. Inhibitory and excitatory effects of dopamine on Aplysia neurones. J Physiol. 1972 Aug;225(1):173–209. doi: 10.1113/jphysiol.1972.sp009933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berry M. S., Cottrell G. A. Excitatory, inhibitory and biphasic synaptic potentials mediated by an identified dopamine-containing neurone. J Physiol. 1975 Jan;244(3):589–612. doi: 10.1113/jphysiol.1975.sp010814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolton T. B. On the latency and form of the membrane responses of smooth muscle to the iontophoretic application of acetylcholine or carbachol. Proc R Soc Lond B Biol Sci. 1976 Aug 27;194(1114):99–119. doi: 10.1098/rspb.1976.0068. [DOI] [PubMed] [Google Scholar]
  4. Bowser-Riley F., House C. R., Smith R. K. Competitive antagonism by phentolamine of responses to biogenic amines and the transmitter at a neuroglandular junction. J Physiol. 1978 Jun;279:473–489. doi: 10.1113/jphysiol.1978.sp012357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowser-Riley F., House C. R. The actions of some putative neurotransmitters on the cockroach salivary gland. J Exp Biol. 1976 Jun;64(3):665–676. doi: 10.1242/jeb.64.3.665. [DOI] [PubMed] [Google Scholar]
  6. Bowser-Riley F. The salivary glands of the cockroach Nauphoeta cinerea (Olivier). A study of its innervation by light and scanning electron microscopy. Cell Tissue Res. 1978 Mar 13;187(3):525–534. doi: 10.1007/BF00229617. [DOI] [PubMed] [Google Scholar]
  7. Creed K. E., Wilson J. A. The latency of response of secretory acinar cells to nerve stimulation in the submandibular gland of the cat. Aust J Exp Biol Med Sci. 1969 Feb;47(1):135–144. doi: 10.1038/icb.1969.13. [DOI] [PubMed] [Google Scholar]
  8. Dreyer F., Peper K. Iontophoretic application of acetylcholine: advantages of high resistance micropipettes in connection with an electronic current pump. Pflugers Arch. 1974 Apr 22;348(3):263–272. doi: 10.1007/BF00587417. [DOI] [PubMed] [Google Scholar]
  9. Feltz A., Mallart A. An analysis of acetylcholine responses of junctional and extrajunctional receptors of frog muscle fibres. J Physiol. 1971 Oct;218(1):85–100. doi: 10.1113/jphysiol.1971.sp009605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gage P. W., Eisenberg R. S. Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers. J Gen Physiol. 1969 Mar;53(3):265–278. doi: 10.1085/jgp.53.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ginsborg B. L., House C. R., Silinsky E. M. Conductance changes associated with the secretory potential in the cockroach salivary gland. J Physiol. 1974 Feb;236(3):723–731. doi: 10.1113/jphysiol.1974.sp010462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ginsborg B. L., House C. R., Silinsky E. M. On the receptors which mediate the hyperpolarization of salivary gland cells of Nauphoeta cinerea Olivier. J Physiol. 1976 Nov;262(2):489–500. doi: 10.1113/jphysiol.1976.sp011607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ginsborg B. L., House C. R. The responses to nerve stimulation of the salivary gland of Nauphoeta cinerea Olivier. J Physiol. 1976 Nov;262(2):477–487. doi: 10.1113/jphysiol.1976.sp011606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ginsborg B. L., Turnbull K. W., House C. R. On the actions of compounds related to dopamine at a neurosecretory synapse. Br J Pharmacol. 1976 May;57(1):133–140. doi: 10.1111/j.1476-5381.1976.tb07663.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hartzell H. C., Kuffler S. W., Stickgold R., Yoshikami D. Synaptic excitation and inhibition resulting from direct action of acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurones. J Physiol. 1977 Oct;271(3):817–846. doi: 10.1113/jphysiol.1977.sp012027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hartzell H. C., Kuffler S. W., Yoshikami D. Post-synaptic potentiation: interaction between quanta of acetylcholine at the skeletal neuromuscular synapse. J Physiol. 1975 Oct;251(2):427–463. doi: 10.1113/jphysiol.1975.sp011102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hill-Smith I., Purves R. D. Synaptic delay in the heart: an ionophoretic study. J Physiol. 1978 Jun;279:31–54. doi: 10.1113/jphysiol.1978.sp012329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hirst G. D., Silinsky E. M. Some effects of 5-hydroxytryptamine, dopamine and noradrenaline on neurones in the submucous plexus of guinea-pig small intestine. J Physiol. 1975 Oct;251(3):817–832. doi: 10.1113/jphysiol.1975.sp011124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. House C. R., Ginsborg B. L. Actions of a dopamine analogue and a neuroleptic at a neuroglandular synapse. Nature. 1976 May 27;261(5558):332–333. doi: 10.1038/261332a0. [DOI] [PubMed] [Google Scholar]
  20. House C. R., Smith R. K. On the receptors involved in the nervous control of salivary secretion by Nauphoeta cinerea Olivier. J Physiol. 1978 Jun;279:457–471. doi: 10.1113/jphysiol.1978.sp012356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Iwatsuki N., Petersen O. H. Pancreatic acinar cells: localization of acetylcholine receptors and the importance of chloride and calcium for acetylcholine-evoked depolarization. J Physiol. 1977 Aug;269(3):723–733. doi: 10.1113/jphysiol.1977.sp011925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. KATZ B., THESLEFF S. A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol. 1957 Aug 29;138(1):63–80. doi: 10.1113/jphysiol.1957.sp005838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kagayama M., Nishiyama A. Membrane potential and input resistance in acinar cells from cat and rabbit submaxillary glands in vivo: effects of autonomic nerve stimulation. J Physiol. 1974 Oct;242(1):157–172. doi: 10.1113/jphysiol.1974.sp010699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Libet B., Tosaka T. Slow inhibitory and excitatory postsynaptic responses in single cells of mammalian sympathetic ganglia. J Neurophysiol. 1969 Jan;32(1):43–50. doi: 10.1152/jn.1969.32.1.43. [DOI] [PubMed] [Google Scholar]
  25. Niedergerke R., Page S. Analysis of catecholamine effects in single atrial trabeculae of the frog heart. Proc R Soc Lond B Biol Sci. 1977 Jun 15;197(1128):333–362. doi: 10.1098/rspb.1977.0074. [DOI] [PubMed] [Google Scholar]
  26. Nishiyama A., Petersen O. H. Pancreatic acinar cells: ionic dependence of acetylcholine-induced membrane potential and resistance change. J Physiol. 1975 Jan;244(2):431–465. doi: 10.1113/jphysiol.1975.sp010807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peper K., Dreyer F., Müller K. D. Analysis of cooperativity of drug-receptor interaction by quantitative iontophoresis at frog motor end plates. Cold Spring Harb Symp Quant Biol. 1976;40:187–192. doi: 10.1101/sqb.1976.040.01.020. [DOI] [PubMed] [Google Scholar]
  28. Purves R. D. Function of muscarinic and nicotinic acetylcholine receptors. Nature. 1976 May 13;261(5556):149–151. doi: 10.1038/261149a0. [DOI] [PubMed] [Google Scholar]
  29. Purves R. D. Muscarinic excitation: a microelectrophoretic study on cultured smooth muscle cells. Br J Pharmacol. 1974 Sep;52(1):77–86. doi: 10.1111/j.1476-5381.1974.tb09689.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Purves R. D. The time course of cellular responses to iontophoretically applied drugs. J Theor Biol. 1977 Mar 21;65(2):327–344. doi: 10.1016/0022-5193(77)90328-9. [DOI] [PubMed] [Google Scholar]
  31. Woodruff G. N., Walker R. J. The effect of dopamine and other compounds on the activity of neurones of Helix aspersa; structure-activity relationships. Int J Neuropharmacol. 1969 May;8(3):279–289. doi: 10.1016/0028-3908(69)90049-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES