Abstract
1. In cats under pentobarbitone anaesthesia the effects of focal temperature changes of the `chemoceptive' areas on the ventral surface of medulla, described by Loeschcke and his associates, were studied with respect to tidal volume, VT, tidal variation in efferent phrenic activity, PhrT, and respiratory rate. The cats were either paralysed and ventilated at various constant PA,CO2 and Pa,O2 levels, or breathing spontaneously.
2. It was confirmed that focal bilateral cooling of the intermediate, `I(S)', areas caused rapid depression of respiration even at constant artificial ventilation. In normocapnic and normoxic conditions apnoea usually ensued at brain surface temperatures of 20-22 °C.
3. The effects were graded along continuous temperature—response curves with enhancements of ventilation above and depression below normal body temperature.
4. The strongest effects on VT and PhrT were obtained from the I(S) areas with no or only small effects on inspiratory or expiratory timing in the vagotomized animal. The Hering—Breuer inflation reflex and its effects on timing and amplitudes were not affected by cooling this area.
5. Focal cooling of the caudal or the rostral `chemoceptive' areas, `C(L)' and `R(M)' areas, caused smaller effects on VT and PhrT but produced significant effects on respiratory rate even after vagotomy.
6. The effects of focal cooling of these areas could be mimicked by topical application of procaine solution which has been shown not to penetrate deeper than 100 μm from the surface.
7. Moderate focal cooling of area I(S) to temperatures above 28-30 °C caused a parallel shift in the CO2—response (VT, PhrT) curves to the right with little change in slope. The PCO2 thresholds for apnoea were correspondingly raised. These focal temperature effects could be compensated by changes in PCO2 with, on the average, 2·7 torr/°C. Focal temperatures below 28 °C usually caused some decrease in slope of the CO2—response curves in addition to further shifts.
8. Added hypoxic stimulus or electrical stimulation of the carotid sinus nerves caused an almost parallel increase of PhrT at all PCO2 levels and all focal temperatures suggesting an additive type of interaction between the input from the peripheral chemoreceptors and that from the central (CO2, H+) sensing structures whether the latter was altered by changing PCO2 or by focal temperature changes on the I(S) areas.
9. In contrast to these effects of hypoxia and stimulation of the carotid sinus nerves the reflex increase of inspiratory activity caused by lung deflation or by electrical stimulation of the glossopharyngeal nerve distal to the carotid sinus nerves was CO2 dependent. These reflex effects decreased with focal cooling of the I(S) areas as with hypocapnia, suggesting a mainly multiplicative or `gain-changing' type of interaction with the central chemoceptive drive.
10. The close similarities in effect of focal cooling and of hypocapnia on the different respiratory parameters even during constant artificial ventilation indicate that focal temperature changes of the I(S) areas intervene effectively with the normal ventilatory response to CO2 without changing the chemical or physical environment of those neural structures in the brain stem which set respiratory pattern.
Full text
PDF




















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradley G. W., von Euler C., Marttila I., Roos B. A model of the central and reflex inhibition of inspiration in the cat. Biol Cybern. 1975 Aug 8;19(2):105–116. doi: 10.1007/BF00364107. [DOI] [PubMed] [Google Scholar]
- Bradley G. W., von Euler C., Marttila I., Roos B. Steady state effects of CO-2 and temperature on the relationship between lung volume and inspiratory duration (Hering-Breuer threshold curve). Acta Physiol Scand. 1974 Nov;92(3):351–363. doi: 10.1111/j.1748-1716.1974.tb05753.x. [DOI] [PubMed] [Google Scholar]
- Bradley G. W., von Euler C., Marttila I., Roos B. Transient and steady state effects of CO-2 on mechanisms determining rate and depth of breathing. Acta Physiol Scand. 1974 Nov;92(3):341–350. doi: 10.1111/j.1748-1716.1974.tb05752.x. [DOI] [PubMed] [Google Scholar]
- Brooks V. B., Kozlovskaya I. B., Atkin A., Horvath F. E., Uno M. Effects of cooling dentate nucleus on tracking-task performance in monkeys. J Neurophysiol. 1973 Nov;36(6):974–995. doi: 10.1152/jn.1973.36.6.974. [DOI] [PubMed] [Google Scholar]
- Bénita M., Condé H. Effects of local cooling upon conduction and synaptic transmission. Brain Res. 1972 Jan 14;36(1):133–151. doi: 10.1016/0006-8993(72)90771-8. [DOI] [PubMed] [Google Scholar]
- CHAI C. Y., MU J. Y., BROBECK J. R. CARDIOVASCULAR AND RESPIRATORY RESPONSES FROM LOCAL HEATING OF MEDULLA OBLONGATA. Am J Physiol. 1965 Aug;209:301–306. doi: 10.1152/ajplegacy.1965.209.2.301. [DOI] [PubMed] [Google Scholar]
- Chai C. Y., Lin M. T. Effects of heating and cooling the spinal cord and medulla oblongata on thermoregulation in monkeys. J Physiol. 1972 Sep;225(2):297–308. doi: 10.1113/jphysiol.1972.sp009941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chai C. Y., Lin M. T. Effects of thermal stimulation of medulla oblongata and spinal cord on decerebrate rabbits. J Physiol. 1973 Oct;234(2):409–419. doi: 10.1113/jphysiol.1973.sp010351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chai C. Y., Wang S. C. Cardiovascular and respiratory responses to cooling of the medulla oblongata of the cat. Proc Soc Exp Biol Med. 1970 Jul;134(3):763–767. doi: 10.3181/00379727-134-34878. [DOI] [PubMed] [Google Scholar]
- Cherniack N. S., von Euler C., Homma I., Kao F. F. Some effects of graded changes in central chemoreceptor input by local temperature changes on the ventral surface of medulla. Adv Exp Med Biol. 1978;99:397–402. doi: 10.1007/978-1-4613-4009-6_42. [DOI] [PubMed] [Google Scholar]
- DONDEY M., ALBE-FESSARD D., LE BEAU J. [First neurophysiologic applications of a method permitting reversible elective block of central structures by localized refrigeration]. Electroencephalogr Clin Neurophysiol. 1962 Oct;14:758–763. doi: 10.1016/0013-4694(62)90092-5. [DOI] [PubMed] [Google Scholar]
- Feldberg W., Guertzenstein P. G. A vasodepressor effect of pentobarbitone sodium. J Physiol. 1972 Jul;224(1):83–103. doi: 10.1113/jphysiol.1972.sp009882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldberg W., Guertzenstein P. G. Vasodepressor effects obtained by drugs acting on the ventral surface of the brain stem. J Physiol. 1976 Jun;258(2):337–355. doi: 10.1113/jphysiol.1976.sp011423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuda Y., Loeschcke H. H. Effect of H+ on spontaneous neuronal activity in the surface layer of the rat medulla oblongata in vitro. Pflugers Arch. 1977 Oct 19;371(1-2):125–134. doi: 10.1007/BF00580780. [DOI] [PubMed] [Google Scholar]
- Guertzenstein P. G. Blood pressure effects obtained by drugs applied to the ventral surface of the brain stem. J Physiol. 1973 Mar;229(2):395–408. doi: 10.1113/jphysiol.1973.sp010145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLMES R. L., NEWMAN P. P., WOLSTENCROFT J. H. A heatsensitive region in the medulla. J Physiol. 1960 Jun;152:93–98. doi: 10.1113/jphysiol.1960.sp006472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jasper H. H., Shacter D. G., Montplaisir J. The effect of local cooling upon spontaneous and evoked electrical activity of cerebral cortex. Can J Physiol Pharmacol. 1970 Sep;48(9):640–652. doi: 10.1139/y70-094. [DOI] [PubMed] [Google Scholar]
- Knox C. K. Characteristics of inflation and deflation reflexes during expiration of the cat. J Neurophysiol. 1973 Mar;36(2):284–295. doi: 10.1152/jn.1973.36.2.284. [DOI] [PubMed] [Google Scholar]
- Loeschcke H. H., De Lattre J., Schläfke M. E., Trouth C. O. Effects on respiration and circulation of electrically stimulating the ventral surface of the medulla oblongata. Respir Physiol. 1970 Sep;10(2):184–197. doi: 10.1016/0034-5687(70)90082-4. [DOI] [PubMed] [Google Scholar]
- Majcherczyk S., Willshaw P. Inhibition of peripheral chemoreceptor activity during superfusion with an alkaline c.s.f. of the ventral brain stem surface of the cat. J Physiol. 1973 May;231(1):26P–27P. [PubMed] [Google Scholar]
- Majcherczyk S., Willshaw P. The influence of hyperventilation on efferent control of peripheral chemoreceptors. Brain Res. 1977 Apr 1;124(3):561–564. doi: 10.1016/0006-8993(77)90957-x. [DOI] [PubMed] [Google Scholar]
- Neil E., O'Regan R. G. Efferent and afferent impulse activity recorded from few-fibre preparations of otherwise intact sinus and aortic nerves. J Physiol. 1971 May;215(1):33–47. doi: 10.1113/jphysiol.1971.sp009456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pleschka K., Albers C., Heerd E. Der Einfluss der Temperatur auf die CO2-Schwelle des Atemsystems. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Oct 12;286(2):142–158. [PubMed] [Google Scholar]
- REED D. J., KELLOGG R. H. Changes in respiratory response to CO2 during natural sleep at sea level and at altitude. J Appl Physiol. 1958 Nov;13(3):325–330. doi: 10.1152/jappl.1958.13.3.325. [DOI] [PubMed] [Google Scholar]
- REED D. J., KELLOGG R. H. Effect of sleep on CO2 stimulation of breathing in acute and chronic hypoxia. J Appl Physiol. 1960 Nov;15:1135–1138. doi: 10.1152/jappl.1960.15.6.1135. [DOI] [PubMed] [Google Scholar]
- REED D. J., KELLOGG R. H. Effect of sleep on hypoxic stimulation of breathing at sea level and altitude. J Appl Physiol. 1960 Nov;15:1130–1134. doi: 10.1152/jappl.1960.15.6.1130. [DOI] [PubMed] [Google Scholar]
- Reeves R. B. Role of body temperature in determining the acid-base state in vertebrates. Fed Proc. 1969 May-Jun;28(3):1204–1208. [PubMed] [Google Scholar]
- Sampson S. R., Biscoe T. J. Efferent control of the carotid body chemoreceptor. Experientia. 1970 Mar 15;26(3):261–262. doi: 10.1007/BF01900082. [DOI] [PubMed] [Google Scholar]
- Schlaefke M. E., Folgering H., Herker A. Separation of peripheral and central chemosensitive drives in anaesthetized and unanaesthetized cats. Bull Physiopathol Respir (Nancy) 1973 May-Jun;9(3):603–604. [PubMed] [Google Scholar]
- Schläfke M. E., See W. R., Massion W. H., Loeschcke H. H. Die Rolle "spezifischer" und unspezifischer Afferenzen für den Antrieb der Atmung, untersucht durch Reizung und Blockade von Afferenzen an der decerebrierten Katze. Pflugers Arch. 1969;312(4):189–205. doi: 10.1007/BF00586928. [DOI] [PubMed] [Google Scholar]
- Tabatabai M. Respiratory and cardiovascular responses resulting from heating the medulla oblongata in cats. Am J Physiol. 1972 Jun;222(6):1558–1564. doi: 10.1152/ajplegacy.1972.222.6.1558. [DOI] [PubMed] [Google Scholar]
- Trippenbach T., Milic-Emili J. Vagal contribution to the inspiratory 'off-switch' mechanism. Fed Proc. 1977 Sep;36(10):2395–2399. [PubMed] [Google Scholar]
- Trouth C. O., Loeschcke H. H., Berndt J. Histological structures in the chemosensitive regions on the ventral surface of the cat's medulla oblongata. Pflugers Arch. 1973 Mar 30;339(3):171–183. doi: 10.1007/BF00587370. [DOI] [PubMed] [Google Scholar]
- VON EULER C., SODERBERG U. Medullary chemosensitive receptors. J Physiol. 1952 Dec;118(4):545–554. doi: 10.1113/jphysiol.1952.sp004816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Euler C., Hayward J. N., Marttila I., Wyman R. J. Respiratory neurones of the ventrolateral nucleus of the solitary tract of cat: vagal input, spinal connections and morphological identification. Brain Res. 1973 Oct 26;61:1–22. doi: 10.1016/0006-8993(73)90512-x. [DOI] [PubMed] [Google Scholar]
- von Euler C., Marttila I., Remmers J. E., Trippenbach T. Effects of lesions in the parabrachial nucleus on the mechanisms for central and reflex termination of inspiration in the cat. Acta Physiol Scand. 1976 Mar;96(3):324–337. doi: 10.1111/j.1748-1716.1976.tb10203.x. [DOI] [PubMed] [Google Scholar]
- von Euler C., Trippenbach T. Excitability changes of the inspiratory "off-switch" mechanism tested by electrical stimulation in nucleus parabrachialis in the cat. Acta Physiol Scand. 1976 Jun;97(2):175–188. doi: 10.1111/j.1748-1716.1976.tb10250.x. [DOI] [PubMed] [Google Scholar]