Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1979 Feb;287:559–573. doi: 10.1113/jphysiol.1979.sp012677

The effects of a disulphonic stilbene on chloride and bicarbonate transport in the turtle bladder.

W A Brodsky, J Durham, G Ehrenspeck
PMCID: PMC1281513  PMID: 430436

Abstract

1. In turtle bladders bathed by Na-free media containing Cl and HCO3, the mucosa is electropositive to the serosa. Serosally applied 4-acetamido-4'-isothiocyano-2,2'-disulphonic stilbene (SITS) reduces the p.d. and Isc by 100%, and reduces the rate of net Cl reabsorption in some bladders but not in others. 2. In the absence of exogenous HCO2 (Cl present), SITS reduces the p.d. and Isc by 100%, and reduces the rate of mucosal acidification by 80%; net Cl reabsorption is not detectable under these HCO3-free bathing conditions. 3. In the absence of exogenous Cl (HCO3, present), the mucosa is also electropositive to the serosa and serosally applied SITS reverses the orientation of the p.d. and Isc so that the mucosa becomes electronegative to the serosa. 4. This constitutes sufficient evidence for the active, electrogenic secretion of an anion, probably HCO3. These data are explained by an analogue of discrete, electrogenic pumps and paths for the reabsorption of Na, Cl, and HCO3, and the secretion of HCO3.

Full text

PDF
559

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRODSKY W. A., SCHILB T. P. OSMOTIC PROPERTIES OF ISOLATED TURTLE BLADDER. Am J Physiol. 1965 Jan;208:46–57. doi: 10.1152/ajplegacy.1965.208.1.46. [DOI] [PubMed] [Google Scholar]
  2. Brodsky W. A., Ehrenspeck G. The localization of ion-selective pumps and paths in the plasma membranes of turtle bladders. Adv Exp Med Biol. 1977;84:41–66. doi: 10.1007/978-1-4684-3279-4_3. [DOI] [PubMed] [Google Scholar]
  3. Brodsky W. A., Schilb T. P. Ionic mechanisms for sodium and chloride transport across turtle bladders. Am J Physiol. 1966 May;210(5):987–996. doi: 10.1152/ajplegacy.1966.210.5.987. [DOI] [PubMed] [Google Scholar]
  4. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  5. Cabantchik Z. I., Rothstein A. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J Membr Biol. 1972 Dec 29;10(3):311–330. doi: 10.1007/BF01867863. [DOI] [PubMed] [Google Scholar]
  6. Cohen L. H., Mueller A., Steinmetz P. R. Inhibition of the bicarbonate exit step in urinary acidification by a disulfonic stilbene. J Clin Invest. 1978 Apr;61(4):981–986. doi: 10.1172/JCI109023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehrenspeck G., Brodsky W. A. Effects of 4-acetamido-4'-isothiocyano-2,2-disulfonic stilbene on ion transport in turtle bladders. Biochim Biophys Acta. 1976 Feb 6;419(3):555–558. doi: 10.1016/0005-2736(76)90268-6. [DOI] [PubMed] [Google Scholar]
  8. Gonzalez C. F. Inhibitory effect of acetazolamide on the active chloride and bicarbonate transport mechanisms across short-circuited turtle bladders. Biochim Biophys Acta. 1969 Oct 14;193(1):146–158. doi: 10.1016/0005-2736(69)90068-6. [DOI] [PubMed] [Google Scholar]
  9. Gonzalez C. F., Schilb T. P. Acetazolamide-sensitive short-circuited current versus mucosal HCO3- concentration in turtle bladders. Biochim Biophys Acta. 1969;193(2):419–429. doi: 10.1016/0005-2736(69)90201-6. [DOI] [PubMed] [Google Scholar]
  10. Gonzalez C. F., Shamoo Y. E., Brodsky W. A. Electrical nature of active chloride transport across short-circuited turtle bladders. Am J Physiol. 1967 Mar;212(3):641–650. doi: 10.1152/ajplegacy.1967.212.3.641. [DOI] [PubMed] [Google Scholar]
  11. Gonzalez C. F., Shamoo Y. E., Brodsky W. A. The accelerating effect of serosal HCO3- on Na+ transport in short-circuited turtle bladders. Biochim Biophys Acta. 1969;193(2):403–418. doi: 10.1016/0005-2736(69)90200-4. [DOI] [PubMed] [Google Scholar]
  12. Gonzalez C. F., Shamoo Y. E., Wyssbrod H. R., Solinger R. E., Brodsky W. A. Electrical nature of sodium transport across the isolated turtle bladder. Am J Physiol. 1967 Aug;213(2):333–340. doi: 10.1152/ajplegacy.1967.213.2.333. [DOI] [PubMed] [Google Scholar]
  13. HEINZ E. The exchangeability of glycine accumulated by carcinoma cells. J Biol Chem. 1957 Mar;225(1):305–315. [PubMed] [Google Scholar]
  14. Knauf P. A., Fuhrmann G. F., Rothstein S., Rothstein A. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J Gen Physiol. 1977 Mar;69(3):363–386. doi: 10.1085/jgp.69.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leslie B. R., Schwartz J. H., Steinmetz P. R. Coupling between Cl- absorption and HCO3- secretion in turtle urinary bladder. Am J Physiol. 1973 Sep;225(3):610–617. doi: 10.1152/ajplegacy.1973.225.3.610. [DOI] [PubMed] [Google Scholar]
  16. McKinney T. D., Burg M. B. Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loads in vivo on transport in vitro. J Clin Invest. 1977 Sep;60(3):766–768. doi: 10.1172/JCI108830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oliver J. A., Himmelstein S., Steinmetz P. R. Energy dependence of urinary bicarbonate secretion in turtle bladder. J Clin Invest. 1975 May;55(5):1003–1008. doi: 10.1172/JCI108000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schilb T. P., Brodsky W. A. Acidification of mucosal fluid by transport of bicarbonate ion in turtle bladders. Am J Physiol. 1966 May;210(5):997–1008. doi: 10.1152/ajplegacy.1966.210.5.997. [DOI] [PubMed] [Google Scholar]
  19. Schilb T. P., Brodsky W. A. CO 2 gradients and acidification by transport of HCO 3 in turtle bladders. Am J Physiol. 1972 Feb;222(2):272–281. doi: 10.1152/ajplegacy.1972.222.2.272. [DOI] [PubMed] [Google Scholar]
  20. Schwartz J. H. H+ current response to CO2 and carbonic anhydrase inhibition in turtle bladder. Am J Physiol. 1976 Aug;231(2):565–572. doi: 10.1152/ajplegacy.1976.231.2.565. [DOI] [PubMed] [Google Scholar]
  21. Solinger R. E., Gonzalez C. F., Shamoo Y. E., Wyssbrod H. R., Brodsky W. A. Effect of ouabain on ion transport mechanisms in the isolated turtle bladder. Am J Physiol. 1968 Jul;215(1):249–261. doi: 10.1152/ajplegacy.1968.215.1.249. [DOI] [PubMed] [Google Scholar]
  22. Steinmetz P. R. Cellular mechanisms of urinary acidification. Physiol Rev. 1974 Oct;54(4):890–956. doi: 10.1152/physrev.1974.54.4.890. [DOI] [PubMed] [Google Scholar]
  23. Steinmetz P. R., Omachi R. S., Frazier H. S. Independence of hydrogen ion secretion and transport of other electrolytes in turtle bladder. J Clin Invest. 1967 Oct;46(10):1541–1548. doi: 10.1172/JCI105645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ullrich K. J., Capasso G., Rumrich G., Papavassiliou F., Klöss S. Coupling between proximal tubular transport processes. Studies with ouabain, SITS and HCO3-free solutions. Pflugers Arch. 1977 Apr 25;368(3):245–252. doi: 10.1007/BF00585203. [DOI] [PubMed] [Google Scholar]
  25. Wilczewski T., Brodsky W. A. Effects of ouabain and amiloride on Na pathways in turtle bladders. Am J Physiol. 1975 Mar;228(3):781–790. doi: 10.1152/ajplegacy.1975.228.3.781. [DOI] [PubMed] [Google Scholar]
  26. Wolosin J. M., Ginsburg H., Cabantchik Z. I. Functional characterization of anion transport system isolated from human erythrocyte membranes. J Biol Chem. 1977 Apr 10;252(7):2419–2427. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES