Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Jan;68(1):147–156. doi: 10.1016/S0006-3495(95)80169-4

Truncated K+ channel DNA sequences specifically suppress lymphocyte K+ channel gene expression.

L Tu 1, V Santarelli 1, C Deutsch 1
PMCID: PMC1281671  PMID: 7711236

Abstract

We have constructed a series of deletion mutants of Kv1.3, a Shaker-like, voltage-gated K+ channel, and examined the ability of these truncated mutants to form channels and to specifically suppress full-length Kv1.3 currents. These constructs were expressed heterologously in both Xenopus oocytes and a mouse cytotoxic T cell line. Our results show that a truncated mutant Kv1.3 must contain both the amino terminus and the first transmembrane-spanning segment, S1, to suppress full-length Kv1.3 currents. Amino-terminal-truncated DNA sequences from one subfamily suppress K+ channel expression of members of only the same subfamily. The first 141 amino acids of the amino-terminal of Kv1.3 are not necessary for channel formation. Deletion of these amino acids yields a current identical to that of full-length Kv1.3, except that it cannot be suppressed by a truncated Kv1.3 containing the amino terminus and S1. To test the ability of truncated Kv1.3 to suppress endogenous K+ currents, we constructed a plasmid that contained both truncated Kv1.3 and a selection marker gene (mouse CD4). Although constitutively expressed K+ currents in Jurkat (a human T cell leukemia line) and GH3 (an anterior pituitary cell line) cells cannot be suppressed by this double-gene plasmid, stimulated (up-regulated) Shaker-like K+ currents in GH3 cells can be suppressed.

Full text

PDF
147

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar J., Grissmer S., Chandy K. G. Full-length and truncated Kv1.3 K+ channels are modulated by 5-HT1c receptor activation and independently by PKC. Am J Physiol. 1993 Dec;265(6 Pt 1):C1571–C1578. doi: 10.1152/ajpcell.1993.265.6.C1571. [DOI] [PubMed] [Google Scholar]
  2. Attali B., Lesage F., Ziliani P., Guillemare E., Honoré E., Waldmann R., Hugnot J. P., Mattéi M. G., Lazdunski M., Barhanin J. Multiple mRNA isoforms encoding the mouse cardiac Kv1-5 delayed rectifier K+ channel. J Biol Chem. 1993 Nov 15;268(32):24283–24289. [PubMed] [Google Scholar]
  3. Babila T., Moscucci A., Wang H., Weaver F. E., Koren G. Assembly of mammalian voltage-gated potassium channels: evidence for an important role of the first transmembrane segment. Neuron. 1994 Mar;12(3):615–626. doi: 10.1016/0896-6273(94)90217-8. [DOI] [PubMed] [Google Scholar]
  4. Chahine M., Chen L. Q., Barchi R. L., Kallen R. G., Horn R. Lidocaine block of human heart sodium channels expressed in Xenopus oocytes. J Mol Cell Cardiol. 1992 Nov;24(11):1231–1236. doi: 10.1016/0022-2828(92)93090-7. [DOI] [PubMed] [Google Scholar]
  5. Deutsch C., Chen L. Q. Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10036–10040. doi: 10.1073/pnas.90.21.10036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hopkins W. F., Demas V., Tempel B. L. Both N- and C-terminal regions contribute to the assembly and functional expression of homo- and heteromultimeric voltage-gated K+ channels. J Neurosci. 1994 Mar;14(3 Pt 1):1385–1393. doi: 10.1523/JNEUROSCI.14-03-01385.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Isacoff E. Y., Jan Y. N., Jan L. Y. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature. 1990 Jun 7;345(6275):530–534. doi: 10.1038/345530a0. [DOI] [PubMed] [Google Scholar]
  8. Lee T. E., Philipson L. H., Kuznetsov A., Nelson D. J. Structural determinant for assembly of mammalian K+ channels. Biophys J. 1994 Mar;66(3 Pt 1):667–673. doi: 10.1016/s0006-3495(94)80840-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Levitan E. S., Hemmick L. M., Birnberg N. C., Kaczmarek L. K. Dexamethasone increases potassium channel messenger RNA and activity in clonal pituitary cells. Mol Endocrinol. 1991 Dec;5(12):1903–1908. doi: 10.1210/mend-5-12-1903. [DOI] [PubMed] [Google Scholar]
  10. Li M., Jan Y. N., Jan L. Y. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science. 1992 Aug 28;257(5074):1225–1230. doi: 10.1126/science.1519059. [DOI] [PubMed] [Google Scholar]
  11. Li M., Unwin N., Stauffer K. A., Jan Y. N., Jan L. Y. Images of purified Shaker potassium channels. Curr Biol. 1994 Feb 1;4(2):110–115. doi: 10.1016/s0960-9822(94)00026-6. [DOI] [PubMed] [Google Scholar]
  12. Liman E. R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992 Nov;9(5):861–871. doi: 10.1016/0896-6273(92)90239-a. [DOI] [PubMed] [Google Scholar]
  13. MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature. 1991 Mar 21;350(6315):232–235. doi: 10.1038/350232a0. [DOI] [PubMed] [Google Scholar]
  14. Margolskee R. F., McHendry-Rinde B., Horn R. Panning transfected cells for electrophysiological studies. Biotechniques. 1993 Nov;15(5):906–911. [PubMed] [Google Scholar]
  15. Matsubara H., Liman E. R., Hess P., Koren G. Pretranslational mechanisms determine the type of potassium channels expressed in the rat skeletal and cardiac muscles. J Biol Chem. 1991 Jul 15;266(20):13324–13328. [PubMed] [Google Scholar]
  16. Matteson D. R., Deutsch C. K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature. 1984 Feb 2;307(5950):468–471. doi: 10.1038/307468a0. [DOI] [PubMed] [Google Scholar]
  17. Northrop J. P., Ullman K. S., Crabtree G. R. Characterization of the nuclear and cytoplasmic components of the lymphoid-specific nuclear factor of activated T cells (NF-AT) complex. J Biol Chem. 1993 Feb 5;268(4):2917–2923. [PubMed] [Google Scholar]
  18. Rettig J., Heinemann S. H., Wunder F., Lorra C., Parcej D. N., Dolly J. O., Pongs O. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature. 1994 May 26;369(6478):289–294. doi: 10.1038/369289a0. [DOI] [PubMed] [Google Scholar]
  19. Shen N. V., Chen X., Boyer M. M., Pfaffinger P. J. Deletion analysis of K+ channel assembly. Neuron. 1993 Jul;11(1):67–76. doi: 10.1016/0896-6273(93)90271-r. [DOI] [PubMed] [Google Scholar]
  20. Takimoto K., Fomina A. F., Gealy R., Trimmer J. S., Levitan E. S. Dexamethasone rapidly induces Kv1.5 K+ channel gene transcription and expression in clonal pituitary cells. Neuron. 1993 Aug;11(2):359–369. doi: 10.1016/0896-6273(93)90191-s. [DOI] [PubMed] [Google Scholar]
  21. VanDongen A. M., Frech G. C., Drewe J. A., Joho R. H., Brown A. M. Alteration and restoration of K+ channel function by deletions at the N- and C-termini. Neuron. 1990 Oct;5(4):433–443. doi: 10.1016/0896-6273(90)90082-q. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES