Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Feb;68(2):547–557. doi: 10.1016/S0006-3495(95)80216-X

Phase equilibria and molecular packing in the N,N-dimethyldodecylamine oxide/gramicidin D/water system studied by 2H nuclear magnetic resonance spectroscopy.

G Orädd 1, G Lindblom 1, G Arvidson 1, K Gunnarsson 1
PMCID: PMC1281719  PMID: 7535115

Abstract

A partial phase diagram of the system N,N-dimethyldodecylamine oxide (DDAO)/water/gramicidin D was determined by 2H-NMR. Both 2H2O and perdeuterated DDAO (DDAO-d31) were studied by solid state NMR techniques. Addition of gramicidin D to the micellar (L1), normal hexagonal (HI) and cubic (I) phases of DDAO induces phase separations, giving two-phase regions, which all contain a lamellar (L alpha) phase. The L alpha phase containing gramicidin is characterized by larger order parameters for DDAO-d31 compared with the corresponding order parameters in the L alpha and HI phases of DDAO-d31/H2O. The L alpha phase may stay in equilibrium with any other phase in the phase diagram. The DDAO exchange between the coexisting phases is slow on the NMR timescale, which is why the recorded NMR spectrum consists of superimposed spectra from the different phases occurring in the sample. Gramicidin D can be solubilized in appreciable quantities only in the lamellar phase of DDAO-d31. Increasing amounts of gramicidin in the liquid crystalline phases result in a continuous increase in the molecular ordering up to about 5 mol% gramicidin, where a plateau is reached. This is consistent with a recent theoretical model describing the influence on the ordering of lipids by a membrane protein with larger hydrophobic thickness than the lipid bilayer. The solvent used for dissolving gramicidin at the incorporation of the peptide in the lipid aggregates has no effect on the 2H-NMR lineshapes of DDAO-d31. It is concluded that gramicidin is solubilized in the L alpha phase and that it always adopts the channel conformation independent of a particular solvent. The channel conformation is also supported by CD studies. In some of the samples, macroscopic orientation of the lipid aggregates is observed. It is concluded that DDAO-d31 in the binary system favors an orientation with the long axis of the hydrocarbon chain perpendicular to the magnetic field, whereas when gramicidin D is present the hydrocarbon chain orients parallel to the magnetic field. This is explained by the fact that gramicidin aligns with its helical axis parallel to the magnetic field, thereby forcing also the DDAO-d31 molecules to obtain such an orientation.

Full text

PDF
547

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applebury M. L., Zuckerman D. M., Lamola A. A., Jovin T. M. Rhodopsin. Purification and recombination with phospholipids assayed by the metarhodopsin I leads to metarhodopsin II transition. Biochemistry. 1974 Aug 13;13(17):3448–3458. doi: 10.1021/bi00714a005. [DOI] [PubMed] [Google Scholar]
  2. Arseniev A. S., Barsukov I. L., Bystrov V. F., Lomize A. L., Ovchinnikov YuA 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 1985 Jul 8;186(2):168–174. doi: 10.1016/0014-5793(85)80702-x. [DOI] [PubMed] [Google Scholar]
  3. Chapman D., Cornell B. A., Ellasz A. W., Perry A. Interactions of helical polypepetide segments which span the hydrocarbon region of lipid bilayers. Studies of the gramicidin A lipid-water system. J Mol Biol. 1977 Jul 5;113(3):517–538. doi: 10.1016/0022-2836(77)90236-4. [DOI] [PubMed] [Google Scholar]
  4. Cornell B. A., Separovic F. A model for gramicidin A'-phospholipid interactions in bilayers. Eur Biophys J. 1988;16(5):299–306. doi: 10.1007/BF00254066. [DOI] [PubMed] [Google Scholar]
  5. Cox K. J., Ho C., Lombardi J. V., Stubbs C. D. Gramicidin conformational studies with mixed-chain unsaturated phospholipid bilayer systems. Biochemistry. 1992 Feb 4;31(4):1112–1117. doi: 10.1021/bi00119a020. [DOI] [PubMed] [Google Scholar]
  6. Davis J. H. Deuterium magnetic resonance study of the gel and liquid crystalline phases of dipalmitoyl phosphatidylcholine. Biophys J. 1979 Sep;27(3):339–358. doi: 10.1016/S0006-3495(79)85222-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fattal D. R., Ben-Shaul A. A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch. Biophys J. 1993 Nov;65(5):1795–1809. doi: 10.1016/S0006-3495(93)81249-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibson N. J., Brown M. F. Influence of pH on the MI-MII equilibrium of rhodopsin in recombinant membranes. Biochem Biophys Res Commun. 1990 Jun 29;169(3):1028–1034. doi: 10.1016/0006-291x(90)91997-7. [DOI] [PubMed] [Google Scholar]
  9. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  10. Killian J. A. Gramicidin and gramicidin-lipid interactions. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):391–425. doi: 10.1016/0304-4157(92)90008-x. [DOI] [PubMed] [Google Scholar]
  11. Killian J. A., Prasad K. U., Hains D., Urry D. W. The membrane as an environment of minimal interconversion. A circular dichroism study on the solvent dependence of the conformational behavior of gramicidin in diacylphosphatidylcholine model membranes. Biochemistry. 1988 Jun 28;27(13):4848–4855. doi: 10.1021/bi00413a040. [DOI] [PubMed] [Google Scholar]
  12. Killian J. A., Trouard T. P., Greathouse D. V., Chupin V., Lindblom G. A general method for the preparation of mixed micelles of hydrophobic peptides and sodium dodecyl sulphate. FEBS Lett. 1994 Jul 11;348(2):161–165. doi: 10.1016/0014-5793(94)00594-x. [DOI] [PubMed] [Google Scholar]
  13. Killian J. A., de Kruijff B., van Echteld C. J., Verkleij A. J., Leunissen-Bijvelt J., de Gier J. Mixtures of gramicidin and lysophosphatidylcholine form lamellar structures. Biochim Biophys Acta. 1983 Feb 9;728(1):141–144. doi: 10.1016/0005-2736(83)90446-7. [DOI] [PubMed] [Google Scholar]
  14. Michel H. Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1982 Jul 5;158(3):567–572. doi: 10.1016/0022-2836(82)90216-9. [DOI] [PubMed] [Google Scholar]
  15. Morrow M. R., Simatos G. A., Srinivasan R., Grandal N., Taylor L., Keough K. M. The effect of changes in gramicidin conformation on bilayer lipid properties. Biochim Biophys Acta. 1991 Nov 18;1070(1):209–214. doi: 10.1016/0005-2736(91)90166-6. [DOI] [PubMed] [Google Scholar]
  16. Schindler H., Seelig J. Deuterium order parameters in relation to thermodynamic properties of a phospholiped bilayer. A statistical mechanical interpretation. Biochemistry. 1975 Jun 3;14(11):2283–2287. doi: 10.1021/bi00682a001. [DOI] [PubMed] [Google Scholar]
  17. Sternin E., Fine B., Bloom M., Tilcock C. P., Wong K. F., Cullis P. R. Acyl chain orientational order in the hexagonal HII phase of phospholipid-water dispersions. Biophys J. 1988 Oct;54(4):689–694. doi: 10.1016/S0006-3495(88)83004-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Thurmond R. L., Lindblom G., Brown M. F. Curvature, order, and dynamics of lipid hexagonal phases studied by deuterium NMR spectroscopy. Biochemistry. 1993 May 25;32(20):5394–5410. doi: 10.1021/bi00071a015. [DOI] [PubMed] [Google Scholar]
  19. Ulmius J., Wennerström H., Lindblom G., Arvidson G. Deuteron nuclear magnetic resonance studies of phase equilibria in a lecithin-water system. Biochemistry. 1977 Dec 27;16(26):5742–5745. doi: 10.1021/bi00645a014. [DOI] [PubMed] [Google Scholar]
  20. Watnick P. I., Dea P., Chan S. I. Characterization of the transverse relaxation rates in lipid bilayers. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2082–2086. doi: 10.1073/pnas.87.6.2082. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES