Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Feb;68(2):655–664. doi: 10.1016/S0006-3495(95)80226-2

Electrostatics of hemoglobins from measurements of the electric dichroism and computer simulations.

J Antosiewicz 1, D Porschke 1
PMCID: PMC1281729  PMID: 7696517

Abstract

Hemoglobins from normal human cells, from sickle cells, and from horse were investigated by electrooptical methods in their oxy and deoxy forms. The reduced linear dichroism measured as a function of the electric field strength demonstrates the existence of permanent dipole moments in the range of 250-400 Debye units. The reduced limiting dichroism is relatively small (< or = 0.1); it is negative for hemoglobin from sickle cells and positive for the hemoglobins from normal human cells and from horse. The dichroism decay time constants are in the range from about 55 to 90 ns. Calculations of the electrooptical data from available crystal structures are given according to models of various complexity, including Monte Carlo simulations of proton fluctuations with energies evaluated by a finite difference Poisson-Boltzmann procedure. The experimental dipole moments are shown to be consistent with the results of the calculations. In the case of human deoxyhemoglobin, the root mean square dipole is higher than the mean dipole by a factor of about 4.5, indicating a particularly large relative contribution due to proton fluctuations. The ratio of the root mean square dipole to the mean dipole is much smaller (approximately 1.1 to approximately 1.5) for the other hemoglobin molecules. The calculations demonstrate that the dichroism decay time constants are not simply determined by the size/shape of the proteins, but are strongly influenced by the orientation of the dipole vector with respect to the axis of maximal absorbance. The comparison of experimental and calculated electrooptical data provides a useful test for the accuracy of electrostatic calculations and/or for the equivalence of structures in crystals and in solutions.

Full text

PDF
655

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antosiewicz J., McCammon J. A., Gilson M. K. Prediction of pH-dependent properties of proteins. J Mol Biol. 1994 May 6;238(3):415–436. doi: 10.1006/jmbi.1994.1301. [DOI] [PubMed] [Google Scholar]
  2. Antosiewicz J., Porschke D. The nature of protein dipole moments: experimental and calculated permanent dipole of alpha-chymotrypsin. Biochemistry. 1989 Dec 26;28(26):10072–10078. doi: 10.1021/bi00452a029. [DOI] [PubMed] [Google Scholar]
  3. Barlow D. J., Thornton J. M. The distribution of charged groups in proteins. Biopolymers. 1986 Sep;25(9):1717–1733. doi: 10.1002/bip.360250913. [DOI] [PubMed] [Google Scholar]
  4. Bolton W., Perutz M. F. Three dimensional fourier synthesis of horse deoxyhaemoglobin at 2.8 Angstrom units resolution. Nature. 1970 Nov 7;228(5271):551–552. doi: 10.1038/228551a0. [DOI] [PubMed] [Google Scholar]
  5. Bräunig R., Gushimana Y., Ilgenfritz G. Ionic strength dependence of the electric dissociation field effect. Investigation of 2,6-dinitrophenol and application to the acid-alkaline transition of metmyoglobin and methemoglobin. Biophys Chem. 1987 May 9;26(2-3):181–191. doi: 10.1016/0301-4622(87)80021-2. [DOI] [PubMed] [Google Scholar]
  6. Brünger A. T., Karplus M. Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison. Proteins. 1988;4(2):148–156. doi: 10.1002/prot.340040208. [DOI] [PubMed] [Google Scholar]
  7. Di Iorio E. E. Preparation of derivatives of ferrous and ferric hemoglobin. Methods Enzymol. 1981;76:57–72. doi: 10.1016/0076-6879(81)76114-7. [DOI] [PubMed] [Google Scholar]
  8. Eaton W. A., Hofrichter J. Polarized absorption and linear dichroism spectroscopy of hemoglobin. Methods Enzymol. 1981;76:175–261. doi: 10.1016/0076-6879(81)76126-3. [DOI] [PubMed] [Google Scholar]
  9. Fermi G., Perutz M. F., Shaanan B., Fourme R. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984 May 15;175(2):159–174. doi: 10.1016/0022-2836(84)90472-8. [DOI] [PubMed] [Google Scholar]
  10. GOEBEL W., VOGEL H. DIELEKTRISCHE EIGENSCHAFTEN VON HAEMOGLOBIN UND URSACHEN IHRER ENTSTEHUNG. I. Z Naturforsch B. 1964 Apr;19:292–302. [PubMed] [Google Scholar]
  11. Garcia de la Torre J. G., Bloomfield V. A. Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q Rev Biophys. 1981 Feb;14(1):81–139. doi: 10.1017/s0033583500002080. [DOI] [PubMed] [Google Scholar]
  12. Hol W. G. The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol. 1985;45(3):149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
  13. Kirkwood J. G., Shumaker J. B. The Influence of Dipole Moment Fluctuations on the Dielectric Increment of Proteins in Solution. Proc Natl Acad Sci U S A. 1952 Oct;38(10):855–862. doi: 10.1073/pnas.38.10.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klapper I., Hagstrom R., Fine R., Sharp K., Honig B. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins. 1986 Sep;1(1):47–59. doi: 10.1002/prot.340010109. [DOI] [PubMed] [Google Scholar]
  15. Malamud D., Drysdale J. W. Isoelectric points of proteins: a table. Anal Biochem. 1978 Jun 1;86(2):620–647. doi: 10.1016/0003-2697(78)90790-x. [DOI] [PubMed] [Google Scholar]
  16. Matthew J. B., Hanania G. I., Gurd F. R. Electrostatic effects in hemoglobin: hydrogen ion equilibria in human deoxy- and oxyhemoglobin A. Biochemistry. 1979 May 15;18(10):1919–1928. doi: 10.1021/bi00577a011. [DOI] [PubMed] [Google Scholar]
  17. Orttung W. H. Anisotropy of proton fluctuations and the Kerr effect of protein solutions. Theoretical considerations. J Phys Chem. 1968 Nov;72(12):4058–4066. doi: 10.1021/j100858a020. [DOI] [PubMed] [Google Scholar]
  18. Orttung W. H. Calculation of the mean-square dipole moment and proton fluctuation anisotropy of hemoglobin at low ionic strength. J Phys Chem. 1969 Feb;73(2):418–423. doi: 10.1021/j100722a026. [DOI] [PubMed] [Google Scholar]
  19. Orttung W. H. Proton binding and dipole moment of hemoglobin. Refined calculations. Biochemistry. 1970 Jun 9;9(12):2394–2402. doi: 10.1021/bi00814a002. [DOI] [PubMed] [Google Scholar]
  20. Padlan E. A., Love W. E. Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refinement at 3.0-A resolution. J Biol Chem. 1985 Jul 15;260(14):8272–8279. doi: 10.2210/pdb1hbs/pdb. [DOI] [PubMed] [Google Scholar]
  21. Porschke D., Jung M. The conformation of single stranded oligonucleotides and of oligonucleotide-oligopeptide complexes from their rotation relaxation in the nanosecond time range. J Biomol Struct Dyn. 1985 Jun;2(6):1173–1184. doi: 10.1080/07391102.1985.10507631. [DOI] [PubMed] [Google Scholar]
  22. Porschke D., Meier H. J., Ronnenberg J. Interactions of nucleic acid double helices induced by electric field pulses. Biophys Chem. 1984 Oct;20(3):225–235. doi: 10.1016/0301-4622(84)87027-1. [DOI] [PubMed] [Google Scholar]
  23. Porschke D. The mechanism of ion polarisation along DNA double helices. Biophys Chem. 1985 Aug;22(3):237–247. doi: 10.1016/0301-4622(85)80046-6. [DOI] [PubMed] [Google Scholar]
  24. Pörschke D. Electric, optical and hydrodynamic parameters of lac repressor from measurements of the electric dichroism. High permanent dipole moment associated with the protein. Biophys Chem. 1987 Nov;28(2):137–147. doi: 10.1016/0301-4622(87)80083-2. [DOI] [PubMed] [Google Scholar]
  25. Pörschke D. Structure and dynamics of a tryptophanepeptide-polynucleotide complex. Nucleic Acids Res. 1980 Apr 11;8(7):1591–1612. doi: 10.1093/nar/8.7.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  27. Scheider W. Dielectric Relaxation of Molecules with Fluctuating Dipole Moment. Biophys J. 1965 Sep;5(5):617–628. doi: 10.1016/s0006-3495(65)86740-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schlecht P., Mayer A., Hettner G., Vogel H. Dielectric properties of hemoglobin and myoglobin. I. Influence of solvent and particle size on the dielectric dispersion. Biopolymers. 1969 Jun;7(6):963–974. doi: 10.1002/bip.1969.360070611. [DOI] [PubMed] [Google Scholar]
  29. Schlecht P., Vogel H., Mayer A. Effect of oxygen binding on the dielectric properties of hemoglobin. Biopolymers. 1968;6(12):1717–1725. doi: 10.1002/bip.1968.360061206. [DOI] [PubMed] [Google Scholar]
  30. Shaanan B. Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983 Nov 25;171(1):31–59. doi: 10.1016/s0022-2836(83)80313-1. [DOI] [PubMed] [Google Scholar]
  31. Takashima S. Use of protein database for the computation of the dipole moments of normal and abnormal hemoglobins. Biophys J. 1993 May;64(5):1550–1558. doi: 10.1016/S0006-3495(93)81524-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Teller D. C., Swanson E., de Haën C. The translational friction coefficient of proteins. Methods Enzymol. 1979;61:103–124. doi: 10.1016/0076-6879(79)61010-8. [DOI] [PubMed] [Google Scholar]
  33. Warwicker J., Watson H. C. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol. 1982 Jun 5;157(4):671–679. doi: 10.1016/0022-2836(82)90505-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES