Abstract
1. Cats were trained to track a small target by rewarding them for keeping their eyes on target. Eye movements were measured by the electromagnetic search coil technique. 2. Cat saccades are qualitatively similar to primate saccades, but exhibit more variability in their parameters. However, they have longer durations and lower maximum velocities than primate saccades. As in the monkey, the duration of the horizontal or vertical component of an oblique saccade is lengthened when the orthogonal component has a larger amplitude. Cat saccades can be modified in midflight like human saccades. Opening the visual feed-back loop by controlling target position with eye position causes the cat to execute a staircase of equal amplitude saccades if a retinal error is present. Increasing the amount of visual feed-back induces saccadic oscillations. 3. Horizontal smooth pursuit of a 0 . 5 deg visual target is limited to velocities of less than 1 deg/sec. However, moving an optokinetic background with the 0 . 5 deg target enables the cat to achieve higher horizontal smooth eye velocities of up to 8 . 5 deg/sec. Prolonged (10-20 sec) constant velocity rotation of an optokinetic drum evokes horizontal slow-phase velocities of up to 28 deg/sec. In response to vertical movements of the target and optokinetic background, smooth eye movements reached 6 deg/sec maximum upward velocities but only 2 . 5 deg/sec maximum downward velocities. Opening the feed back loop with no retinal error present causes the eye to exhibit a growing smooth trajectory. The response to a Rashbass step-ramp target suggests that the feline smooth response is a function of target movement rather than displacement. 4. These data suggest that cat saccadic eye movements resemble those of primates while the cat smooth pursuit and optokinetically induced eye movements are more similar to those of the rabbit.
Full text
PDF




















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bahill A. T., Stark L. Oblique saccadic eye movements. Independence of horizontal and vertical channels. Arch Ophthalmol. 1977 Jul;95(7):1258–1261. doi: 10.1001/archopht.1977.04450070156016. [DOI] [PubMed] [Google Scholar]
- Bahill A. T., Stark L. Overlapping saccades and glissades are produced by fatigue in the saccadic eye movement system. Exp Neurol. 1975 Jul;48(1):95–106. doi: 10.1016/0014-4886(75)90225-3. [DOI] [PubMed] [Google Scholar]
- Barmack N. H. Dynamic visual acuity as an index of eye movement control. Vision Res. 1970 Dec;10(12):1377–1391. doi: 10.1016/0042-6989(70)90089-1. [DOI] [PubMed] [Google Scholar]
- Barmack N. H. Modification of eye movements by instantaneous changes in the velocity of visual targets. Vision Res. 1970 Dec;10(12):1431–1441. doi: 10.1016/0042-6989(70)90093-3. [DOI] [PubMed] [Google Scholar]
- Benson A. J., Guedry F. E., Jr Comparison of tracking-task performance and nystagmus during sinusoidal oscillation in yaw and pitch. Aerosp Med. 1971 Jun;42(6):593–601. [PubMed] [Google Scholar]
- Boghen D., Troost B. T., Daroff R. B., Dell'Osso L. F., Birkett J. E. Velocity characteristics of normal human saccades. Invest Ophthalmol. 1974 Aug;13(8):619–623. [PubMed] [Google Scholar]
- Cleland B. G., Dubin M. W., Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 1971 Sep;217(2):473–496. doi: 10.1113/jphysiol.1971.sp009581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen B., Matsuo V., Raphan T. Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol. 1977 Sep;270(2):321–344. doi: 10.1113/jphysiol.1977.sp011955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collewijn H. Latency and gain of the rabbit's optokinetic reactions to small movements. Brain Res. 1972 Jan 14;36(1):59–70. doi: 10.1016/0006-8993(72)90766-4. [DOI] [PubMed] [Google Scholar]
- Collins W. E., Schroeder D. J., Rice N., Mertens R. A., Kranz G. Some characteristics of optokinetic eye-movement patterns: a comparative study. Aerosp Med. 1970 Nov;41(11):1251–1262. [PubMed] [Google Scholar]
- Crommelinck M., Roucoux A. Characteristics of cat's eye saccades in different states of alertness. Brain Res. 1976 Feb 27;103(3):574–578. doi: 10.1016/0006-8993(76)90458-3. [DOI] [PubMed] [Google Scholar]
- Easter S. S., Jr The time course of saccadic eye movements in goldfish. Vision Res. 1975 Mar;15(3):405–409. doi: 10.1016/0042-6989(75)90089-9. [DOI] [PubMed] [Google Scholar]
- Fuchs A. F., Luschei E. S. Firing patterns of abducens neurons of alert monkeys in relationship to horizontal eye movement. J Neurophysiol. 1970 May;33(3):382–392. doi: 10.1152/jn.1970.33.3.382. [DOI] [PubMed] [Google Scholar]
- Fuchs A. F., Robinson D. A. A method for measuring horizontal and vertical eye movement chronically in the monkey. J Appl Physiol. 1966 May;21(3):1068–1070. doi: 10.1152/jappl.1966.21.3.1068. [DOI] [PubMed] [Google Scholar]
- Fuchs A. F. Saccadic and smooth pursuit eye movements in the monkey. J Physiol. 1967 Aug;191(3):609–631. doi: 10.1113/jphysiol.1967.sp008271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honrubia V., Scott B. J., Ward P. J. Experimental studies on optokinetic nystagmus. I. Normal cats. Acta Otolaryngol. 1967 Nov-Dec;64(5):388–402. doi: 10.3109/00016486709139126. [DOI] [PubMed] [Google Scholar]
- ROBINSON D. A. A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. IEEE Trans Biomed Eng. 1963 Oct;10:137–145. doi: 10.1109/tbmel.1963.4322822. [DOI] [PubMed] [Google Scholar]
- ROBINSON D. A. THE MECHANICS OF HUMAN SACCADIC EYE MOVEMENT. J Physiol. 1964 Nov;174:245–264. doi: 10.1113/jphysiol.1964.sp007485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson D. A. Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol. 1976 Sep;39(5):954–969. doi: 10.1152/jn.1976.39.5.954. [DOI] [PubMed] [Google Scholar]
- Robinson D. A. The mechanics of human smooth pursuit eye movement. J Physiol. 1965 Oct;180(3):569–591. doi: 10.1113/jphysiol.1965.sp007718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlag-Rey M., Schlag J. Visual and presaccadic neuronal activity in thalamic internal medullary lamina of cat: a study of targeting. J Neurophysiol. 1977 Jan;40(1):156–173. doi: 10.1152/jn.1977.40.1.156. [DOI] [PubMed] [Google Scholar]
- Stryker M., Blakemore C. Saccadic and disjunctive eye movements in cats. Vision Res. 1972 Dec;12(12):2005–2013. doi: 10.1016/0042-6989(72)90054-5. [DOI] [PubMed] [Google Scholar]
- Takemori S., Cohen B. Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res. 1974 Jun 7;72(2):213–224. doi: 10.1016/0006-8993(74)90860-9. [DOI] [PubMed] [Google Scholar]
- Viviani P., Berthoz A., Tracey D. The curvature of oblique saccades. Vision Res. 1977;17(5):661–664. doi: 10.1016/0042-6989(77)90143-2. [DOI] [PubMed] [Google Scholar]
- Westheimer G., Blair S. M. Function Organization of primate oculomotor system revealed by cerebellectomy. Exp Brain Res. 1974;21(5):463–472. doi: 10.1007/BF00237165. [DOI] [PubMed] [Google Scholar]
