Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Mar;68(3):847–857. doi: 10.1016/S0006-3495(95)80261-4

Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.

Y P Zhang 1, R N Lewis 1, R S Hodges 1, R N McElhaney 1
PMCID: PMC1281809  PMID: 7756552

Abstract

High-sensitivity differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the interaction of a synthetic alpha-helical hydrophobic transmembrane peptide, Acetyl-Lys2-Gly-Leu24-Lys2-Ala-Amide, and members of a homologous series of n-saturated diacylphosphatidylethanolamines (PEs). In the lower range of peptide mol fractions, the DSC endotherms exhibited by the lipid/peptide mixtures consist of two components. The temperature and cooperativity of the sharper, higher-temperature component are very similar to those of pure PE bilayers and are almost unaffected by variations in the peptide/lipid ratio. However, the fractional contribution of this component to the total enthalpy change decreases with increases in peptide concentration, and this component completely disappears at higher peptide mol fractions. The other component, which is less cooperative and occurs at a lower temperature, predominates at higher peptide concentrations. These two components of the DSC endotherm can be attributed to the chain-melting phase transitions of peptide-nonassociated and peptide-associated PE molecules, respectively. Although the temperature at which the peptide-associated PE molecules melt is progressively decreased by increases in peptide concentration, the magnitude of this shift is independent of the length of the PE hydrocarbon chain. In addition, the width of the phase transition observed at higher peptide concentrations is also relatively insensitive to PE hydrocarbon chain length, except that peptide gel-phase immiscibility occurs in very short- or very long-chain PE bilayers. Moreover, the enthalpy of the chain-melting transition of the peptide-associated PE does not decrease to 0 even at high peptide concentrations, suggesting that this peptide does not abolish the cooperative gel/liquid-crystalline phase transition of the lipids with which it is in contact. The FTIR spectroscopic data indicate that the peptide remains in a predominantly alpha-helical conformation, but that the peptide alpha-helix is subject to small distortions coincident with the changes in hydrophobic thickness that accompany the chain-melting phase transition of the PE bilayer. These data also indicate that the peptide significantly disorders the hydrocarbon chains of adjacent PE molecules in both the gel and liquid-crystalline states relatively independently of lipid hydrocarbon chain length. The relative independence of many aspects of PE-peptide interactions on the hydrophobic thickness of the host bilayer observed in the present study is in marked contrast to the results of our previous study of peptide-phosphatidylcholine (PC) model membranes (Zhang et al. (1992) Biochemistry 31:11579-11588), where strong hydrocarbon chain length-dependent effects were observed. The differing effects of peptide incorporation on PE and PC bilayers is ascribed to the much stronger lipid polar headgroup interactions in the former system. We postulate that the primary effect of transmembrane peptide incorporation into PE bilayers is the disruption of the relatively strong electrostatic and hydrogen-bonding interactions at the bilayer surface, and that this effect is sufficiently large to mask the effect of hydrophobic mismatch between the lengths of the hydrophobic core of the peptide and its host bilayer.

Full text

PDF
847

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boggs J. M. Effect of lipid structural modifications on their intermolecular hydrogen bonding interactions and membrane functions. Biochem Cell Biol. 1986 Jan;64(1):50–57. doi: 10.1139/o86-008. [DOI] [PubMed] [Google Scholar]
  2. Boggs J. M. Intermolecular hydrogen bonding between lipids: influence on organization and function of lipids in membranes. Can J Biochem. 1980 Oct;58(10):755–770. doi: 10.1139/o80-107. [DOI] [PubMed] [Google Scholar]
  3. Boggs J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987 Oct 5;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. [DOI] [PubMed] [Google Scholar]
  4. Cserháti T., Szögyi M. Interaction of phospholipids with proteins and peptides. New advances 1990. Int J Biochem. 1992 Apr;24(4):525–537. doi: 10.1016/0020-711x(92)90323-s. [DOI] [PubMed] [Google Scholar]
  5. Cserháti T., Szögyi M. Interaction of phospholipids with proteins, peptides and amino acids. New advances 1987-1989. Int J Biochem. 1991;23(2):131–145. doi: 10.1016/0020-711x(91)90181-l. [DOI] [PubMed] [Google Scholar]
  6. Cserhåti T., Szögyi M. Interaction of phospholipids with proteins and peptides. New advances III. Int J Biochem. 1993 Feb;25(2):123–146. doi: 10.1016/0020-711x(93)90001-u. [DOI] [PubMed] [Google Scholar]
  7. Huschilt J. C., Millman B. M., Davis J. H. Orientation of alpha-helical peptides in a lipid bilayer. Biochim Biophys Acta. 1989 Feb 13;979(1):139–141. doi: 10.1016/0005-2736(89)90534-8. [DOI] [PubMed] [Google Scholar]
  8. Lewis B. A., Engelman D. M. Bacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknesses. J Mol Biol. 1983 May 15;166(2):203–210. doi: 10.1016/s0022-2836(83)80006-0. [DOI] [PubMed] [Google Scholar]
  9. Lewis R. N., McElhaney R. N. Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines. Biophys J. 1993 Apr;64(4):1081–1096. doi: 10.1016/S0006-3495(93)81474-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mantsch H. H., Madec C., Lewis R. N., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing iso-branched fatty acids. 2. Infrared and 31P NMR spectroscopic studies. Biochemistry. 1985 May 7;24(10):2440–2446. doi: 10.1021/bi00331a008. [DOI] [PubMed] [Google Scholar]
  11. Mantsch H. H., McElhaney R. N. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids. 1991 Mar;57(2-3):213–226. doi: 10.1016/0009-3084(91)90077-o. [DOI] [PubMed] [Google Scholar]
  12. McElhaney R. N. Differential scanning calorimetric studies of lipid-protein interactions in model membrane systems. Biochim Biophys Acta. 1986 Dec 22;864(3-4):361–421. doi: 10.1016/0304-4157(86)90004-3. [DOI] [PubMed] [Google Scholar]
  13. McElhaney R. N. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. Chem Phys Lipids. 1982 May;30(2-3):229–259. doi: 10.1016/0009-3084(82)90053-6. [DOI] [PubMed] [Google Scholar]
  14. Morrow M. R., Huschilt J. C., Davis J. H. Simultaneous modeling of phase and calorimetric behavior in an amphiphilic peptide/phospholipid model membrane. Biochemistry. 1985 Sep 24;24(20):5396–5406. doi: 10.1021/bi00341a018. [DOI] [PubMed] [Google Scholar]
  15. Mouritsen O. G., Bloom M. Mattress model of lipid-protein interactions in membranes. Biophys J. 1984 Aug;46(2):141–153. doi: 10.1016/S0006-3495(84)84007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nagle J. F. Theory of lipid monolayer and bilayer phase transitions: effect of headgroup interactions. J Membr Biol. 1976;27(3):233–250. doi: 10.1007/BF01869138. [DOI] [PubMed] [Google Scholar]
  17. Owicki J. C., McConnell H. M. Theory of protein-lipid and protein-protein interactions in bilayer membranes. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4750–4754. doi: 10.1073/pnas.76.10.4750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pauls K. P., MacKay A. L., Söderman O., Bloom M., Tanjea A. K., Hodges R. S. Dynamic properties of the backbone of an integral membrane polypeptide measured by 2H-NMR. Eur Biophys J. 1985;12(1):1–11. doi: 10.1007/BF00254089. [DOI] [PubMed] [Google Scholar]
  19. Riegler J., Möhwald H. Elastic interactions of photosynthetic reaction center proteins affecting phase transitions and protein distributions. Biophys J. 1986 Jun;49(6):1111–1118. doi: 10.1016/S0006-3495(86)83740-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roux M., Neumann J. M., Hodges R. S., Devaux P. F., Bloom M. Conformational changes of phospholipid headgroups induced by a cationic integral membrane peptide as seen by deuterium magnetic resonance. Biochemistry. 1989 Mar 7;28(5):2313–2321. doi: 10.1021/bi00431a050. [DOI] [PubMed] [Google Scholar]
  21. Sperotto M. M., Mouritsen O. G. Monte Carlo simulation studies of lipid order parameter profiles near integral membrane proteins. Biophys J. 1991 Feb;59(2):261–270. doi: 10.1016/S0006-3495(91)82219-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zhang Y. P., Lewis R. N., Hodges R. S., McElhaney R. N. FTIR spectroscopic studies of the conformation and amide hydrogen exchange of a peptide model of the hydrophobic transmembrane alpha-helices of membrane proteins. Biochemistry. 1992 Nov 24;31(46):11572–11578. doi: 10.1021/bi00161a041. [DOI] [PubMed] [Google Scholar]
  23. Zhang Y. P., Lewis R. N., Hodges R. S., McElhaney R. N. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylcholine bilayers: differential scanning calorimetric and FTIR spectroscopic studies. Biochemistry. 1992 Nov 24;31(46):11579–11588. doi: 10.1021/bi00161a042. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES