Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Mar;68(3):936–945. doi: 10.1016/S0006-3495(95)80269-9

Anesthetics alter the physical and functional properties of the Ca-ATPase in cardiac sarcoplasmic reticulum.

B S Karon 1, L M Geddis 1, H Kutchai 1, D D Thomas 1
PMCID: PMC1281817  PMID: 7756557

Abstract

We have studied the effects of the local anesthetic lidocaine, and the general anesthetic halothane, on the function and oligomeric state of the CA-ATPase in cardiac sarcoplasmic reticulum (SR). Oligomeric changes were detected by time-resolved phosphorescence anisotropy (TPA). Lidocaine inhibited and aggregated the Ca-ATPase in cardiac SR. Micromolar calcium or 0.5 M lithium chloride protected against lidocaine-induced inhibition, indicating that electrostatic interactions are essential to lidocaine inhibition of the Ca-ATPase. The phospholamban (PLB) antibody 2D12, which mimics PLB phosphorylation, had no effect on lidocaine inhibition of the Ca-ATPase in cardiac SR. Inhibition and aggregation of the Ca-ATPase in cardiac SR occurred at lower concentrations of lidocaine than necessary to inhibit and aggregate the Ca-ATPase in skeletal SR, suggesting that the cardiac isoform of the enzyme has a higher affinity for lidocaine. Halothane inhibited and aggregated the Ca-ATPase in cardiac SR. Both inhibition and aggregation of the Ca-ATPase by halothane were much greater in the presence of PLB antibody or when PLB was phosphorylated, indicating a protective effect of PLB on halothane-induced inhibition and aggregation. The effects of halothane on cardiac SR are opposite from the effects of halothane observed in skeletal SR, where halothane activates and dissociates the Ca-ATPase. These results underscore the crucial role of protein-protein interactions on Ca-ATPase regulation and anesthetic perturbation of cardiac SR.

Full text

PDF
936

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anteneodo C., Rodahl A. M., Meiering E., Heynen M. L., Sennisterra G. A., Lepock J. R. Interaction of dibucaine with the transmembrane domain of the Ca(2+)-ATPase of sarcoplasmic reticulum. Biochemistry. 1994 Oct 11;33(40):12283–12290. doi: 10.1021/bi00206a035. [DOI] [PubMed] [Google Scholar]
  2. Bigelow D. J., Thomas D. D. Rotational dynamics of lipid and the Ca-ATPase in sarcoplasmic reticulum. The molecular basis of activation by diethyl ether. J Biol Chem. 1987 Oct 5;262(28):13449–13456. [PubMed] [Google Scholar]
  3. Birmachu W., Nisswandt F. L., Thomas D. D. Conformational transitions in the calcium adenosinetriphosphatase studied by time-resolved fluorescence resonance energy transfer. Biochemistry. 1989 May 2;28(9):3940–3947. doi: 10.1021/bi00435a047. [DOI] [PubMed] [Google Scholar]
  4. Birmachu W., Thomas D. D. Rotational dynamics of the Ca-ATPase in sarcoplasmic reticulum studied by time-resolved phosphorescence anisotropy. Biochemistry. 1990 Apr 24;29(16):3904–3914. doi: 10.1021/bi00468a017. [DOI] [PubMed] [Google Scholar]
  5. Birmachu W., Voss J. C., Louis C. F., Thomas D. D. Protein and lipid rotational dynamics in cardiac and skeletal sarcoplasmic reticulum detected by EPR and phosphorescence anisotropy. Biochemistry. 1993 Sep 14;32(36):9445–9453. doi: 10.1021/bi00087a024. [DOI] [PubMed] [Google Scholar]
  6. Blanck T. J., Thompson M. Calcium transport by cardiac sarcoplasmic reticulum: modulation of halothane action by substrate concentration and pH. Anesth Analg. 1981 Jun;60(6):390–394. [PubMed] [Google Scholar]
  7. Bokesch P. M., Post C., Strichartz G. Structure-activity relationship of lidocaine homologs producing tonic and frequency-dependent impulse blockade in nerve. J Pharmacol Exp Ther. 1986 Jun;237(3):773–781. [PubMed] [Google Scholar]
  8. Brandl C. J., Green N. M., Korczak B., MacLennan D. H. Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell. 1986 Feb 28;44(4):597–607. doi: 10.1016/0092-8674(86)90269-2. [DOI] [PubMed] [Google Scholar]
  9. Cantilina T., Sagara Y., Inesi G., Jones L. R. Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca2+. J Biol Chem. 1993 Aug 15;268(23):17018–17025. [PubMed] [Google Scholar]
  10. Casella E. S., Suite N. D., Fisher Y. I., Blanck T. J. The effect of volatile anesthetics on the pH dependence of calcium uptake by cardiac sarcoplasmic reticulum. Anesthesiology. 1987 Sep;67(3):386–390. doi: 10.1097/00000542-198709000-00016. [DOI] [PubMed] [Google Scholar]
  11. Cornea R. L., Thomas D. D. Effects of membrane thickness on the molecular dynamics and enzymatic activity of reconstituted Ca-ATPase. Biochemistry. 1994 Mar 15;33(10):2912–2920. doi: 10.1021/bi00176a022. [DOI] [PubMed] [Google Scholar]
  12. Eads T. M., Thomas D. D., Austin R. H. Microsecond rotational motions of eosin-labeled myosin measured by time-resolved anisotropy of absorption and phosphorescence. J Mol Biol. 1984 Oct 15;179(1):55–81. doi: 10.1016/0022-2836(84)90306-1. [DOI] [PubMed] [Google Scholar]
  13. Feher J. J., Briggs F. N. Determinants of calcium loading at steady state in sarcoplasmic reticulum. Biochim Biophys Acta. 1983 Jan 19;727(2):389–402. doi: 10.1016/0005-2736(83)90424-8. [DOI] [PubMed] [Google Scholar]
  14. Franks N. P., Lieb W. R. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994 Feb 17;367(6464):607–614. doi: 10.1038/367607a0. [DOI] [PubMed] [Google Scholar]
  15. Frazer M. J., Lynch C., 3rd Halothane and isoflurane effects on Ca2+ fluxes of isolated myocardial sarcoplasmic reticulum. Anesthesiology. 1992 Aug;77(2):316–323. doi: 10.1097/00000542-199208000-00015. [DOI] [PubMed] [Google Scholar]
  16. Hughes G., Starling A. P., East J. M., Lee A. G. Mechanism of inhibition of the Ca(2+)-ATPase by spermine and other polycationic compounds. Biochemistry. 1994 Apr 26;33(16):4745–4754. doi: 10.1021/bi00182a001. [DOI] [PubMed] [Google Scholar]
  17. Iaizzo P. A., Klein W., Lehmann-Horn F. Fura-2 detected myoplasmic calcium and its correlation with contracture force in skeletal muscle from normal and malignant hyperthermia susceptible pigs. Pflugers Arch. 1988 Jun;411(6):648–653. doi: 10.1007/BF00580861. [DOI] [PubMed] [Google Scholar]
  18. James P., Inui M., Tada M., Chiesi M., Carafoli E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature. 1989 Nov 2;342(6245):90–92. doi: 10.1038/342090a0. [DOI] [PubMed] [Google Scholar]
  19. Karon B. S., Mahaney J. E., Thomas D. D. Halothane and cyclopiazonic acid modulate Ca-ATPase oligomeric state and function in sarcoplasmic reticulum. Biochemistry. 1994 Nov 22;33(46):13928–13937. doi: 10.1021/bi00250a048. [DOI] [PubMed] [Google Scholar]
  20. Karon B. S., Thomas D. D. Molecular mechanism of Ca-ATPase activation by halothane in sarcoplasmic reticulum. Biochemistry. 1993 Jul 27;32(29):7503–7511. doi: 10.1021/bi00080a023. [DOI] [PubMed] [Google Scholar]
  21. Katz A. M., Repke D. I., Corkedale S., Schwarz J. Effects of local anaesthetics on calcium transport by canine cardiac microsomes (fragmented sarcoplasmic reticulum). Cardiovasc Res. 1975 Nov;9(6):764–769. doi: 10.1093/cvr/9.6.764. [DOI] [PubMed] [Google Scholar]
  22. Kinosita K., Jr, Kawato S., Ikegami A. A theory of fluorescence polarization decay in membranes. Biophys J. 1977 Dec;20(3):289–305. doi: 10.1016/S0006-3495(77)85550-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kutchai H., Campbell K. P. Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane. Biochemistry. 1989 May 30;28(11):4830–4839. doi: 10.1021/bi00437a047. [DOI] [PubMed] [Google Scholar]
  24. Kutchai H., Mahaney J. E., Geddis L. M., Thomas D. D. Hexanol and lidocaine affect the oligomeric state of the Ca-ATPase of sarcoplasmic reticulum. Biochemistry. 1994 Nov 15;33(45):13208–13222. doi: 10.1021/bi00249a007. [DOI] [PubMed] [Google Scholar]
  25. Lain R. F., Hess M. L., Gertz E. W., Briggs F. N. Calcium uptake activity of canine myocardial sarcoplasmic reticulum in the presence of anesthetic agents. Circ Res. 1968 Nov;23(5):597–604. doi: 10.1161/01.res.23.5.597. [DOI] [PubMed] [Google Scholar]
  26. Lindemann J. P., Jones L. R., Hathaway D. R., Henry B. G., Watanabe A. M. beta-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem. 1983 Jan 10;258(1):464–471. [PubMed] [Google Scholar]
  27. Lipari G., Szabo A. Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys J. 1980 Jun;30(3):489–506. doi: 10.1016/S0006-3495(80)85109-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Louis C. F., Zualkernan K., Roghair T., Mickelson J. R. The effects of volatile anesthetics on calcium regulation by malignant hyperthermia-susceptible sarcoplasmic reticulum. Anesthesiology. 1992 Jul;77(1):114–125. doi: 10.1097/00000542-199207000-00017. [DOI] [PubMed] [Google Scholar]
  29. Louro S. R., Tabak M., Nascimento O. R. Depth profiling of dibucaine in sarcoplasmic reticulum vesicles by fluorescence quenching. Biochim Biophys Acta. 1994 Jan 19;1189(2):243–246. doi: 10.1016/0005-2736(94)90071-x. [DOI] [PubMed] [Google Scholar]
  30. Lu Y. Z., Kirchberger M. A. Effects of a nonionic detergent on calcium uptake by cardiac microsomes. Biochemistry. 1994 May 3;33(17):5056–5062. doi: 10.1021/bi00183a008. [DOI] [PubMed] [Google Scholar]
  31. Ludescher R. D., Thomas D. D. Microsecond rotational dynamics of phosphorescent-labeled muscle cross-bridges. Biochemistry. 1988 May 3;27(9):3343–3351. doi: 10.1021/bi00409a034. [DOI] [PubMed] [Google Scholar]
  32. Mahaney J. E., Thomas D. D. Effects of melittin on molecular dynamics and Ca-ATPase activity in sarcoplasmic reticulum membranes: electron paramagnetic resonance. Biochemistry. 1991 Jul 23;30(29):7171–7180. doi: 10.1021/bi00243a019. [DOI] [PubMed] [Google Scholar]
  33. Malinconico S. M., McCarl R. L. Effect of halothane on cardiac sarcoplasmic reticulum Ca2+-ATPase at low calcium concentrations. Mol Pharmacol. 1982 Jul;22(1):8–10. [PubMed] [Google Scholar]
  34. Mickelson J. R., Gallant E. M., Rempel W. E., Johnson K. M., Litterer L. A., Jacobson B. A., Louis C. F. Effects of the halothane-sensitivity gene on sarcoplasmic reticulum function. Am J Physiol. 1989 Oct;257(4 Pt 1):C787–C794. doi: 10.1152/ajpcell.1989.257.4.C787. [DOI] [PubMed] [Google Scholar]
  35. Moutin M. J., Rapin C., Dupont Y. Ruthenium red affects the intrinsic fluorescence of the calcium-ATPase of skeletal sarcoplasmic reticulum. Biochim Biophys Acta. 1992 Jun 19;1100(3):321–328. doi: 10.1016/0167-4838(92)90488-y. [DOI] [PubMed] [Google Scholar]
  36. Price H. L., Ohnishi S. T. Effects of anesthetics on the heart. Fed Proc. 1980 Apr;39(5):1575–1579. [PubMed] [Google Scholar]
  37. Restall C. J., Dale R. E., Murray E. K., Gilbert C. W., Chapman D. Rotational diffusion of calcium-dependent adenosine-5'-triphosphatase in sarcoplasmic reticulum: a detailed study. Biochemistry. 1984 Dec 18;23(26):6765–6776. doi: 10.1021/bi00321a075. [DOI] [PubMed] [Google Scholar]
  38. Rusy B. F., Komai H. Anesthetic depression of myocardial contractility: a review of possible mechanisms. Anesthesiology. 1987 Nov;67(5):745–766. doi: 10.1097/00000542-198711000-00020. [DOI] [PubMed] [Google Scholar]
  39. Saffman P. G., Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sasaki T., Inui M., Kimura Y., Kuzuya T., Tada M. Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase. J Biol Chem. 1992 Jan 25;267(3):1674–1679. [PubMed] [Google Scholar]
  41. Sham J. S., Jones L. R., Morad M. Phospholamban mediates the beta-adrenergic-enhanced Ca2+ uptake in mammalian ventricular myocytes. Am J Physiol. 1991 Oct;261(4 Pt 2):H1344–H1349. doi: 10.1152/ajpheart.1991.261.4.H1344. [DOI] [PubMed] [Google Scholar]
  42. Squier T. C., Bigelow D. J., Thomas D. D. Lipid fluidity directly modulates the overall protein rotational mobility of the Ca-ATPase in sarcoplasmic reticulum. J Biol Chem. 1988 Jul 5;263(19):9178–9186. [PubMed] [Google Scholar]
  43. Squier T. C., Hughes S. E., Thomas D. D. Rotational dynamics and protein-protein interactions in the Ca-ATPase mechanism. J Biol Chem. 1988 Jul 5;263(19):9162–9170. [PubMed] [Google Scholar]
  44. Squier T. C., Thomas D. D. Selective detection of the rotational dynamics of the protein-associated lipid hydrocarbon chains in sarcoplasmic reticulum membranes. Biophys J. 1989 Oct;56(4):735–748. doi: 10.1016/S0006-3495(89)82721-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Strichartz G. R., Sanchez V., Arthur G. R., Chafetz R., Martin D. Fundamental properties of local anesthetics. II. Measured octanol:buffer partition coefficients and pKa values of clinically used drugs. Anesth Analg. 1990 Aug;71(2):158–170. doi: 10.1213/00000539-199008000-00008. [DOI] [PubMed] [Google Scholar]
  46. Voss J., Birmachu W., Hussey D. M., Thomas D. D. Effects of melittin on molecular dynamics and Ca-ATPase activity in sarcoplasmic reticulum membranes: time-resolved optical anisotropy. Biochemistry. 1991 Jul 30;30(30):7498–7506. doi: 10.1021/bi00244a019. [DOI] [PubMed] [Google Scholar]
  47. Voss J., Jones L. R., Thomas D. D. The physical mechanism of calcium pump regulation in the heart. Biophys J. 1994 Jul;67(1):190–196. doi: 10.1016/S0006-3495(94)80469-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wendt D. J., Starmer C. F., Grant A. O. pH dependence of kinetics and steady-state block of cardiac sodium channels by lidocaine. Am J Physiol. 1993 May;264(5 Pt 2):H1588–H1598. doi: 10.1152/ajpheart.1993.264.5.H1588. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES