Abstract
Actomyosin interactions were examined by using yeast actin mutants with alanines replacing charged amino acid pairs D24/D25, E99/E100, D80/D81, and E83/K84. In the in vitro motility experiments, actin filaments of D24A/D25A or E99A/E100A mutants moved in the presence of 0.7% methylcellulose at the velocities of wild-type actin. Without methylcellulose, these mutant filaments, but not the D80/D81 or E83/K84 filaments, dissociated from the assay surface upon addition of ATP. Measurements of myosin subfragment-1 (S1) binding to D24A/D25A- and E99A/E100A-polymerized actins in the presence of ATP revealed a three- and twofold decrease in their binding constant, respectively, compared with wild-type actin. In contrast to this, all monomeric actins had the same binding affinity for S1. The rates and extents of polymerization of D24A/D25A and E99A/E100A actins by S1 were reduced in comparison to wild-type actin. The local structure of subdomain-2 on actin, as probed by subtilisin cleavage, was not altered for either mutant. A twofold decrease in nucleotide exchange was detected for the D24A/D25A mutant actin. These results demonstrate the involvement of the D24/D25 and E99/E100 residues in the weak binding of myosin to actin and reveal that residues D80/D81 and E83/K84 do not modulate actomyosin interactions.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams S., Reisler E. Role of sequence 18-29 on actin in actomyosin interactions. Biochemistry. 1993 May 18;32(19):5051–5056. doi: 10.1021/bi00070a012. [DOI] [PubMed] [Google Scholar]
- Cook R. K., Blake W. T., Rubenstein P. A. Removal of the amino-terminal acidic residues of yeast actin. Studies in vitro and in vivo. J Biol Chem. 1992 May 5;267(13):9430–9436. [PubMed] [Google Scholar]
- Cook R. K., Root D., Miller C., Reisler E., Rubenstein P. A. Enhanced stimulation of myosin subfragment 1 ATPase activity by addition of negatively charged residues to the yeast actin NH2 terminus. J Biol Chem. 1993 Feb 5;268(4):2410–2415. [PubMed] [Google Scholar]
- DasGupta G., White J., Cheung P., Reisler E. Interactions between G-actin and myosin subfragment 1: immunochemical probing of the NH2-terminal segment on actin. Biochemistry. 1990 Sep 11;29(36):8503–8508. doi: 10.1021/bi00488a043. [DOI] [PubMed] [Google Scholar]
- Johara M., Toyoshima Y. Y., Ishijima A., Kojima H., Yanagida T., Sutoh K. Charge-reversion mutagenesis of Dictyostelium actin to map the surface recognized by myosin during ATP-driven sliding motion. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2127–2131. doi: 10.1073/pnas.90.6.2127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kron S. J., Toyoshima Y. Y., Uyeda T. Q., Spudich J. A. Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 1991;196:399–416. doi: 10.1016/0076-6879(91)96035-p. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Orlova A., Egelman E. H. A conformational change in the actin subunit can change the flexibility of the actin filament. J Mol Biol. 1993 Jul 20;232(2):334–341. doi: 10.1006/jmbi.1993.1393. [DOI] [PubMed] [Google Scholar]
- Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
- Reisler E. Actin molecular structure and function. Curr Opin Cell Biol. 1993 Feb;5(1):41–47. doi: 10.1016/s0955-0674(05)80006-7. [DOI] [PubMed] [Google Scholar]
- Root D. D., Reisler E. Cooperativity of thiol-modified myosin filaments. ATPase and motility assays of myosin function. Biophys J. 1992 Sep;63(3):730–740. doi: 10.1016/S0006-3495(92)81646-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schröder R. R., Manstein D. J., Jahn W., Holden H., Rayment I., Holmes K. C., Spudich J. A. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature. 1993 Jul 8;364(6433):171–174. doi: 10.1038/364171a0. [DOI] [PubMed] [Google Scholar]
- Strzelecka-Gołaszewska H., Moraczewska J., Khaitlina S. Y., Mossakowska M. Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion. Eur J Biochem. 1993 Feb 1;211(3):731–742. doi: 10.1111/j.1432-1033.1993.tb17603.x. [DOI] [PubMed] [Google Scholar]
- Sutoh K., Ando M., Sutoh K., Toyoshima Y. Y. Site-directed mutations of Dictyostelium actin: disruption of a negative charge cluster at the N terminus. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7711–7714. doi: 10.1073/pnas.88.17.7711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valentin-Ranc C., Carlier M. F. Characterization of oligomers as kinetic intermediates in myosin subfragment 1-induced polymerization of G-actin. J Biol Chem. 1992 Oct 25;267(30):21543–21550. [PubMed] [Google Scholar]
- Wertman K. F., Drubin D. G., Botstein D. Systematic mutational analysis of the yeast ACT1 gene. Genetics. 1992 Oct;132(2):337–350. doi: 10.1093/genetics/132.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
