Abstract
DNA helicases catalyze the unwinding of double-stranded (ds) DNA to yield the single-stranded (ss) DNA intermediates required in DNA replication, recombination, and repair. DNA helicases couple the free energy of nucleoside triphosphate (NTP) binding and hydrolysis to separate the two complementary DNA strands while also translocating vectorially along the DNA substrate. As such, helicases are functionally DNA motor proteins. The functional form of helicases generally appears to be oligomeric (usually dimers or hexamers), which provides the helicase with multiple DNA binding sites that are required for translocation and DNA unwinding. The affinity of ss- versus dsDNA for these multiple DNA binding sites is modulated allosterically by NTP binding, hydrolysis, and product release, which is central to helicase-catalyzed DNA unwinding. The mechanistic details of the DNA unwinding, translocation, and NTPase reactions are only starting to emerge. We discuss energy coupling by DNA helicases in general, and by the dimeric E. coli Rep helicase in particular, focusing on the similarities of these enzymes to classical motor proteins.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amaratunga M., Lohman T. M. Escherichia coli rep helicase unwinds DNA by an active mechanism. Biochemistry. 1993 Jul 13;32(27):6815–6820. doi: 10.1021/bi00078a003. [DOI] [PubMed] [Google Scholar]
- Arai N., Kornberg A. Rep protein as a helicase in an active, isolatable replication fork of duplex phi X174 DNA. J Biol Chem. 1981 May 25;256(10):5294–5298. [PubMed] [Google Scholar]
- Bjornson K. P., Amaratunga M., Moore K. J., Lohman T. M. Single-turnover kinetics of helicase-catalyzed DNA unwinding monitored continuously by fluorescence energy transfer. Biochemistry. 1994 Nov 29;33(47):14306–14316. doi: 10.1021/bi00251a044. [DOI] [PubMed] [Google Scholar]
- Chao K. L., Lohman T. M. DNA-induced dimerization of the Escherichia coli Rep helicase. J Mol Biol. 1991 Oct 20;221(4):1165–1181. doi: 10.1016/0022-2836(91)90926-w. [DOI] [PubMed] [Google Scholar]
- Geiselmann J., Wang Y., Seifried S. E., von Hippel P. H. A physical model for the translocation and helicase activities of Escherichia coli transcription termination protein Rho. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7754–7758. doi: 10.1073/pnas.90.16.7754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackney D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6865–6869. doi: 10.1073/pnas.91.15.6865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackney D. D. Kinesin and myosin ATPases: variations on a theme. Philos Trans R Soc Lond B Biol Sci. 1992 Apr 29;336(1276):13–18. doi: 10.1098/rstb.1992.0038. [DOI] [PubMed] [Google Scholar]
- Hill T. L., Tsuchiya T. Theoretical aspects of translocation on DNA: adenosine triphosphatases and treadmilling binding proteins. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4796–4800. doi: 10.1073/pnas.78.8.4796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jencks W. P. How does a calcium pump pump calcium? J Biol Chem. 1989 Nov 15;264(32):18855–18858. [PubMed] [Google Scholar]
- Jencks W. P. The utilization of binding energy in coupled vectorial processes. Adv Enzymol Relat Areas Mol Biol. 1980;51:75–106. doi: 10.1002/9780470122969.ch2. [DOI] [PubMed] [Google Scholar]
- Lohman T. M. Escherichia coli DNA helicases: mechanisms of DNA unwinding. Mol Microbiol. 1992 Jan;6(1):5–14. doi: 10.1111/j.1365-2958.1992.tb00831.x. [DOI] [PubMed] [Google Scholar]
- Lohman T. M. Helicase-catalyzed DNA unwinding. J Biol Chem. 1993 Feb 5;268(4):2269–2272. [PubMed] [Google Scholar]
- Lohman T. M., Mascotti D. P. Thermodynamics of ligand-nucleic acid interactions. Methods Enzymol. 1992;212:400–424. doi: 10.1016/0076-6879(92)12026-m. [DOI] [PubMed] [Google Scholar]
- Matson S. W., Kaiser-Rogers K. A. DNA helicases. Annu Rev Biochem. 1990;59:289–329. doi: 10.1146/annurev.bi.59.070190.001445. [DOI] [PubMed] [Google Scholar]
- Moore K. J., Lohman T. M. Kinetic mechanism of adenine nucleotide binding to and hydrolysis by the Escherichia coli Rep monomer. 1. Use of fluorescent nucleotide analogues. Biochemistry. 1994 Dec 6;33(48):14550–14564. doi: 10.1021/bi00252a023. [DOI] [PubMed] [Google Scholar]
- Moore K. J., Lohman T. M. Kinetic mechanism of adenine nucleotide binding to and hydrolysis by the Escherichia coli Rep monomer. 2. Application of a kinetic competition approach. Biochemistry. 1994 Dec 6;33(48):14565–14578. doi: 10.1021/bi00252a024. [DOI] [PubMed] [Google Scholar]
- Raney K. D., Sowers L. C., Millar D. P., Benkovic S. J. A fluorescence-based assay for monitoring helicase activity. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6644–6648. doi: 10.1073/pnas.91.14.6644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
- Roman L. J., Eggleston A. K., Kowalczykowski S. C. Processivity of the DNA helicase activity of Escherichia coli recBCD enzyme. J Biol Chem. 1992 Feb 25;267(6):4207–4214. [PubMed] [Google Scholar]
- Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong I., Chao K. L., Bujalowski W., Lohman T. M. DNA-induced dimerization of the Escherichia coli rep helicase. Allosteric effects of single-stranded and duplex DNA. J Biol Chem. 1992 Apr 15;267(11):7596–7610. [PubMed] [Google Scholar]
- Wong I., Lohman T. M. Allosteric effects of nucleotide cofactors on Escherichia coli Rep helicase-DNA binding. Science. 1992 Apr 17;256(5055):350–355. doi: 10.1126/science.256.5055.350. [DOI] [PubMed] [Google Scholar]
- Yarranton G. T., Gefter M. L. Enzyme-catalyzed DNA unwinding: studies on Escherichia coli rep protein. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1658–1662. doi: 10.1073/pnas.76.4.1658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerle C. T., Frieden C. Analysis of progress curves by simulations generated by numerical integration. Biochem J. 1989 Mar 1;258(2):381–387. doi: 10.1042/bj2580381. [DOI] [PMC free article] [PubMed] [Google Scholar]
