Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Apr;68(4):1246–1269. doi: 10.1016/S0006-3495(95)80300-0

An easy-to-use model for O2 supply to red muscle. Validity of assumptions, sensitivity to errors in data.

K Groebe 1
PMCID: PMC1282022  PMID: 7787016

Abstract

An easy-to-use capillary cylinder model of O2 supply to muscle is presented that considers all those factors that are known to be most important for realistic results: (1) red blood cell (RBC) O2 unloading along the capillary, (2) effects of the particulate nature of blood, (3) free and hemoglobin-facilitated O2 diffusion and reaction kinetics inside RBCs, (4) free and myoglobin-facilitated O2 diffusion inside the muscle cell, and (5) carrier-free region separating RBC and tissue. In a first approach, a highly simplified yet reasonably accurate treatment of the complex three-dimensional oxygen diffusion field in and next to capillaries is employed. As an alternative, a more realistic description using RBC/capillary diffusing capacity has been included. Model development proceeds step by step and is designed to be easily comprehensible for a broad readership. In spite of the number of features accounted for, the model is simple to apply, even for scientists not specialized in the field of modeling. PO2 distributions calculated by the model are in good qualitative agreement with experimental data and with former modelling results. By means of suitable extensions to the model that are also developed it is shown for a wide range of muscle performances that quite generally the following complication may be neglected safely: (1) complexity of O2 diffusion field near capillaries, (2) deviations of capillary domain cross sections from the circular shape, (3) O2 diffusion parallel to the capillary direction, and (4) PO2 dependence of O2 consumption rate. Finally, a sensitivity analysis is performed in which propagation of errors in the input data into the results is investigated. The interpretation of the calculated sensitivities gives insights in the specific dependencies of muscular O2 supply on the various input parameters. Moreover, basic interrelations governing carrier-facilitated diffusional O2 transport to muscle become apparent and are discussed.

Full text

PDF
1246

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor S. M., Pape P. C. Measurement of myoglobin diffusivity in the myoplasm of frog skeletal muscle fibres. J Physiol. 1988 Dec;406:247–275. doi: 10.1113/jphysiol.1988.sp017379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clark A., Jr, Clark P. A. The end-points of the oxygen path: transport resistance in red cells and mitochondria. Adv Exp Med Biol. 1986;200:43–47. doi: 10.1007/978-1-4684-5188-7_6. [DOI] [PubMed] [Google Scholar]
  3. Clark A., Jr, Federspiel W. J., Clark P. A., Cokelet G. R. Oxygen delivery from red cells. Biophys J. 1985 Feb;47(2 Pt 1):171–181. doi: 10.1016/s0006-3495(85)83890-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Connett R. J., Honig C. R., Gayeski T. E., Brooks G. A. Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. J Appl Physiol (1985) 1990 Mar;68(3):833–842. doi: 10.1152/jappl.1990.68.3.833. [DOI] [PubMed] [Google Scholar]
  5. Connett R. J., Honig C. R. Regulation of VO2 in red muscle: do current biochemical hypotheses fit in vivo data? Am J Physiol. 1989 Apr;256(4 Pt 2):R898–R906. doi: 10.1152/ajpregu.1989.256.4.R898. [DOI] [PubMed] [Google Scholar]
  6. Eriksson E., Myrhage R. Microvascular dimensions and blood flow in skeletal muscle. Acta Physiol Scand. 1972 Oct;86(2):211–222. doi: 10.1111/j.1748-1716.1972.tb05327.x. [DOI] [PubMed] [Google Scholar]
  7. Federspiel W. J. A model study of intracellular oxygen gradients in a myoglobin-containing skeletal muscle fiber. Biophys J. 1986 Apr;49(4):857–868. doi: 10.1016/S0006-3495(86)83715-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Federspiel W. J., Popel A. S. A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvasc Res. 1986 Sep;32(2):164–189. doi: 10.1016/0026-2862(86)90052-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gayeski T. E., Connett R. J., Honig C. R. Minimum intracellular PO2 for maximum cytochrome turnover in red muscle in situ. Am J Physiol. 1987 May;252(5 Pt 2):H906–H915. doi: 10.1152/ajpheart.1987.252.5.H906. [DOI] [PubMed] [Google Scholar]
  10. Gayeski T. E., Honig C. R. Intracellular PO2 in long axis of individual fibers in working dog gracilis muscle. Am J Physiol. 1988 Jun;254(6 Pt 2):H1179–H1186. doi: 10.1152/ajpheart.1988.254.6.H1179. [DOI] [PubMed] [Google Scholar]
  11. Gayeski T. E., Honig C. R. O2 gradients from sarcolemma to cell interior in red muscle at maximal VO2. Am J Physiol. 1986 Oct;251(4 Pt 2):H789–H799. doi: 10.1152/ajpheart.1986.251.4.H789. [DOI] [PubMed] [Google Scholar]
  12. Groebe K. A versatile model of steady state O2 supply to tissue. Application to skeletal muscle. Biophys J. 1990 Mar;57(3):485–498. doi: 10.1016/S0006-3495(90)82565-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Groebe K., Thews G. Calculated intra- and extracellular PO2 gradients in heavily working red muscle. Am J Physiol. 1990 Jul;259(1 Pt 2):H84–H92. doi: 10.1152/ajpheart.1990.259.1.H84. [DOI] [PubMed] [Google Scholar]
  14. Groebe K., Thews G. Effects of red cell spacing and red cell movement upon oxygen release under conditions of maximally working skeletal muscle. Adv Exp Med Biol. 1989;248:175–185. doi: 10.1007/978-1-4684-5643-1_22. [DOI] [PubMed] [Google Scholar]
  15. Groebe K., Thews G. Role of geometry and anisotropic diffusion for modelling PO2 profiles in working red muscle. Respir Physiol. 1990 Mar;79(3):255–278. doi: 10.1016/0034-5687(90)90131-h. [DOI] [PubMed] [Google Scholar]
  16. Groebe K., Thews G. Theoretical analysis of oxygen supply to contracted skeletal muscle. Adv Exp Med Biol. 1986;200:495–514. doi: 10.1007/978-1-4684-5188-7_62. [DOI] [PubMed] [Google Scholar]
  17. Hellums J. D. The resistance to oxygen transport in the capillaries relative to that in the surrounding tissue. Microvasc Res. 1977 Jan;13(1):131–136. doi: 10.1016/0026-2862(77)90122-4. [DOI] [PubMed] [Google Scholar]
  18. Homer L. D., Shelton J. B., Dorsey C. H., Williams T. J. Anisotropic diffusion of oxygen in slices of rat muscle. Am J Physiol. 1984 Jan;246(1 Pt 2):R107–R113. doi: 10.1152/ajpregu.1984.246.1.R107. [DOI] [PubMed] [Google Scholar]
  19. Honig C. R., Gayeski T. E., Federspiel W., Clark A., Jr, Clark P. Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities. Adv Exp Med Biol. 1984;169:23–38. doi: 10.1007/978-1-4684-1188-1_2. [DOI] [PubMed] [Google Scholar]
  20. Honig C. R., Odoroff C. L. Calculated dispersion of capillary transit times: significance for oxygen exchange. Am J Physiol. 1981 Feb;240(2):H199–H208. doi: 10.1152/ajpheart.1981.240.2.H199. [DOI] [PubMed] [Google Scholar]
  21. Hoofd L., Turek Z., Olders J. Calculation of oxygen pressures and fluxes in a flat plane perpendicular to any capillary distribution. Adv Exp Med Biol. 1989;248:187–196. doi: 10.1007/978-1-4684-5643-1_23. [DOI] [PubMed] [Google Scholar]
  22. Jürgens K. D., Peters T., Gros G. Diffusivity of myoglobin in intact skeletal muscle cells. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3829–3833. doi: 10.1073/pnas.91.9.3829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Klitzman B., Duling B. R. Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol. 1979 Oct;237(4):H481–H490. doi: 10.1152/ajpheart.1979.237.4.H481. [DOI] [PubMed] [Google Scholar]
  24. Lund N., Damon D. H., Damon D. N., Duling B. R. Capillary grouping in hamster tibials anterior muscles: flow patterns, and physiological significance. Int J Microcirc Clin Exp. 1987;5(4):359–372. [PubMed] [Google Scholar]
  25. Piiper J., Scheid P. Cross-sectional PO2 distributions in Krogh cylinder and solid cylinder models. Respir Physiol. 1986 Jun;64(3):241–251. doi: 10.1016/0034-5687(86)90118-0. [DOI] [PubMed] [Google Scholar]
  26. Zander R. Cellular oxygen concentration. Adv Exp Med Biol. 1976;75:463–467. doi: 10.1007/978-1-4684-3273-2_54. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES