Abstract
As determined by freeze fracture electron microscopy, increasing levels of bovine brain galactosylceramide (GalCer) altered the surface structure of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers by inducing a striking "macro-ripple" phase in the larger, multilamellar lipid vesicles at GalCer mole fractions between 0.4 and 0.8. The term "macro-ripple" phase was used to distinguish it from the P beta' ripple phase observed in saturated, symmetric-chain length phosphatidylcholines. Whereas the P beta' ripple phase displays two types of corrugations, one with a wavelength of 12-15 nm and the other with a wavelength of 25-35 nm, the macro-ripple phase occurring in GalCer/POPC dispersions was of one type with a wavelength of 100-110 nm. Also, in contrast to the extended linear arrays of adjacent ripples observed in the P beta' ripple phase, the macro-ripple phase of GalCer/POPC dispersions was interrupted frequently by packing defects resulting from double dislocations and various disclinations and, thus, appeared to be continuously twisting and turning. Control experiments verified that the macro-ripple phase was not an artifact of incomplete lipid mixing or demixing during preparation. Three different methods of lipid mixing were compared: a spray method of rapid solvent evaporation, a sublimation method of solvent removal, and solvent removal using a rotary evaporation apparatus. Control experiments also revealed that the macro-ripple phase was observed regardless of whether lipid specimens were prepared by either ultra-rapid or manual plunge freezing methods as well as either in the presence or absence of the cryo-protectant glycerol. The macro-ripple phase was always observed in mixtures that were fully annealed by incubation above the main thermal transition of both POPC and bovine brain GalCer before rapid freezing. If the GalCer mixed with POPC contained only nonhydroxy acyl chains or only 2-hydroxy acyl chains, then the occurrence of macro-ripple phase decreased dramatically.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali S., Brockman H. L., Brown R. E. Structural determinants of miscibility in surface films of galactosylceramide and phosphatidylcholine: effect of unsaturation in the galactosylceramide acyl chain. Biochemistry. 1991 Nov 26;30(47):11198–11205. doi: 10.1021/bi00111a002. [DOI] [PubMed] [Google Scholar]
- Archibald D. D., Yager P. Microstructural polymorphism in bovine brain galactocerebroside and its two major subfractions. Biochemistry. 1992 Sep 22;31(37):9045–9055. doi: 10.1021/bi00152a048. [DOI] [PubMed] [Google Scholar]
- Bellare J. R., Davis H. T., Scriven L. E., Talmon Y. Controlled environment vitrification system: an improved sample preparation technique. J Electron Microsc Tech. 1988 Sep;10(1):87–111. doi: 10.1002/jemt.1060100111. [DOI] [PubMed] [Google Scholar]
- Bhat S., Spitalnik S. L., Gonzalez-Scarano F., Silberberg D. H. Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7131–7134. doi: 10.1073/pnas.88.16.7131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown R. E., Hyland K. J. Spontaneous transfer of ganglioside GM1 from its micelles to lipid vesicles of differing size. Biochemistry. 1992 Nov 3;31(43):10602–10609. doi: 10.1021/bi00158a024. [DOI] [PubMed] [Google Scholar]
- Bunow M. R., Levin I. W. Molecular conformations of cerebrosides in bilayers determined by Raman spectroscopy. Biophys J. 1980 Dec;32(3):1007–1021. doi: 10.1016/S0006-3495(80)85032-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bunow M. R., Levin I. W. Phase behavior of cerebroside and its fractions with phosphatidylcholines: calorimetric studies. Biochim Biophys Acta. 1988 Apr 22;939(3):577–586. doi: 10.1016/0005-2736(88)90105-8. [DOI] [PubMed] [Google Scholar]
- Bunow M. R. Two gel states of cerebrosides. Calorimetric and Raman spectroscopic evidence. Biochim Biophys Acta. 1979 Sep 28;574(3):542–546. doi: 10.1016/0005-2760(79)90250-9. [DOI] [PubMed] [Google Scholar]
- Cevc G. Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae. Biochim Biophys Acta. 1991 Feb 11;1062(1):59–69. doi: 10.1016/0005-2736(91)90335-6. [DOI] [PubMed] [Google Scholar]
- Curatolo W., Jungalwala F. B. Phase behavior of galactocerebrosides from bovine brain. Biochemistry. 1985 Nov 5;24(23):6608–6613. doi: 10.1021/bi00344a046. [DOI] [PubMed] [Google Scholar]
- Curatolo W., Neuringer L. J. The effects of cerebrosides on model membrane shape. J Biol Chem. 1986 Dec 25;261(36):17177–17182. [PubMed] [Google Scholar]
- Curatolo W. The interactions of 1-palmitoyl-2-oleylphosphatidylcholine and bovine brain cerebroside. Biochim Biophys Acta. 1986 Oct 9;861(2):373–376. doi: 10.1016/0005-2736(86)90441-4. [DOI] [PubMed] [Google Scholar]
- Curatolo W. The physical properties of glycolipids. Biochim Biophys Acta. 1987 Jun 24;906(2):111–136. doi: 10.1016/0304-4157(87)90008-6. [DOI] [PubMed] [Google Scholar]
- Curatolo W. Thermal behavior of fractionated and unfractionated bovine brain cerebrosides. Biochemistry. 1982 Apr 13;21(8):1761–1764. doi: 10.1021/bi00537a010. [DOI] [PubMed] [Google Scholar]
- Díaz R. S., Monreal J. Unusual low proton permeability of liposomes prepared from the endogenous myelin lipids. J Neurochem. 1994 May;62(5):2022–2029. doi: 10.1046/j.1471-4159.1994.62052022.x. [DOI] [PubMed] [Google Scholar]
- Döbereiner H. G., Käs J., Noppl D., Sprenger I., Sackmann E. Budding and fission of vesicles. Biophys J. 1993 Oct;65(4):1396–1403. doi: 10.1016/S0006-3495(93)81203-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardam M., Silvius J. R. Intermixing of dipalmitoylphosphatidylcholine with phospho- and sphingolipids bearing highly asymmetric hydrocarbon chains. Biochim Biophys Acta. 1989 Apr 28;980(3):319–325. doi: 10.1016/0005-2736(89)90319-2. [DOI] [PubMed] [Google Scholar]
- Harouse J. M., Bhat S., Spitalnik S. L., Laughlin M., Stefano K., Silberberg D. H., Gonzalez-Scarano F. Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science. 1991 Jul 19;253(5017):320–323. doi: 10.1126/science.1857969. [DOI] [PubMed] [Google Scholar]
- Hicks A., Dinda M., Singer M. A. The ripple phase of phosphatidylcholines: effect of chain length and cholesterol. Biochim Biophys Acta. 1987 Sep 18;903(1):177–185. doi: 10.1016/0005-2736(87)90167-2. [DOI] [PubMed] [Google Scholar]
- Jackson M., Johnston D. S., Chapman D. Differential scanning calorimetric and Fourier transform infrared spectroscopic investigations of cerebroside polymorphism. Biochim Biophys Acta. 1988 Oct 20;944(3):497–506. doi: 10.1016/0005-2736(88)90521-4. [DOI] [PubMed] [Google Scholar]
- Janiak M. J., Small D. M., Shipley G. G. Nature of the Thermal pretransition of synthetic phospholipids: dimyristolyl- and dipalmitoyllecithin. Biochemistry. 1976 Oct 19;15(21):4575–4580. doi: 10.1021/bi00666a005. [DOI] [PubMed] [Google Scholar]
- Johnson S. B., Brown R. E. Simplified derivatization for determining sphingolipid fatty acyl composition by gas chromatography-mass spectrometry. J Chromatogr. 1992 Jul 17;605(2):281–286. doi: 10.1016/0021-9673(92)85248-r. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston D. S., Chapman D. A calorimetric study of the thermotropic behaviour of mixtures of brain cerebrosides with other brain lipids. Biochim Biophys Acta. 1988 Apr 22;939(3):603–614. doi: 10.1016/0005-2736(88)90108-3. [DOI] [PubMed] [Google Scholar]
- Lee D. C., Miller I. R., Chapman D. An infrared spectroscopic study of metastable and stable forms of hydrated cerebroside bilayers. Biochim Biophys Acta. 1986 Jul 24;859(2):266–270. doi: 10.1016/0005-2736(86)90222-1. [DOI] [PubMed] [Google Scholar]
- Lin H., Huang C. Eutectic phase behavior of 1-stearoyl-2-caprylphosphatidylcholine and dimyristoylphosphatidylcholine mixtures. Biochim Biophys Acta. 1988 Dec 8;946(1):178–184. doi: 10.1016/0005-2736(88)90471-3. [DOI] [PubMed] [Google Scholar]
- Lu D., Singh D., Morrow M. R., Grant C. W. Effect of glycosphingolipid fatty acid chain length on behavior in unsaturated phosphatidylcholine bilayers: a 2H NMR study. Biochemistry. 1993 Jan 12;32(1):290–297. doi: 10.1021/bi00052a037. [DOI] [PubMed] [Google Scholar]
- Maggio B., Albert J., Yu R. K. Thermodynamic-geometric correlations for the morphology of self-assembled structures of glycosphingolipids and their mixtures with dipalmitoylphosphatidylcholine. Biochim Biophys Acta. 1988 Nov 22;945(2):145–160. doi: 10.1016/0005-2736(88)90477-4. [DOI] [PubMed] [Google Scholar]
- Maggio B., Ariga T., Sturtevant J. M., Yu R. K. Thermotropic behavior of binary mixtures of dipalmitoylphosphatidylcholine and glycosphingolipids in aqueous dispersions. Biochim Biophys Acta. 1985 Aug 8;818(1):1–12. doi: 10.1016/0005-2736(85)90131-2. [DOI] [PubMed] [Google Scholar]
- Maggio B. The surface behavior of glycosphingolipids in biomembranes: a new frontier of molecular ecology. Prog Biophys Mol Biol. 1994;62(1):55–117. doi: 10.1016/0079-6107(94)90006-x. [DOI] [PubMed] [Google Scholar]
- Mehlhorn I. E., Florio E., Barber K. R., Lordo C., Grant C. W. Evidence that trans-bilayer interdigitation of glycosphingolipid long chain fatty acids may be a general phenomenon. Biochim Biophys Acta. 1988 Mar 22;939(1):151–159. doi: 10.1016/0005-2736(88)90056-9. [DOI] [PubMed] [Google Scholar]
- Morrow M. R., Singh D., Lu D., Grant C. W. Glycosphingolipid phase behaviour in unsaturated phosphatidylcholine bilayers: a 2H-NMR study. Biochim Biophys Acta. 1992 Apr 29;1106(1):85–93. doi: 10.1016/0005-2736(92)90225-b. [DOI] [PubMed] [Google Scholar]
- Neuringer L. J., Sears B., Jungalwala F. B. Deuterium NMR studies of cerebroside-phospholipid bilayers. Biochim Biophys Acta. 1979 Dec 12;558(3):325–329. doi: 10.1016/0005-2736(79)90268-2. [DOI] [PubMed] [Google Scholar]
- Nieva J. L., Bron R., Corver J., Wilschut J. Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J. 1994 Jun 15;13(12):2797–2804. doi: 10.1002/j.1460-2075.1994.tb06573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pascher I., Lundmark M., Nyholm P. G., Sundell S. Crystal structures of membrane lipids. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):339–373. doi: 10.1016/0304-4157(92)90006-v. [DOI] [PubMed] [Google Scholar]
- Reed R. A., Shipley G. G. Effect of chain unsaturation on the structure and thermotropic properties of galactocerebrosides. Biophys J. 1989 Feb;55(2):281–292. doi: 10.1016/S0006-3495(89)82803-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reed R. A., Shipley G. G. Structure and metastability of N-lignocerylgalactosylsphingosine (cerebroside) bilayers. Biochim Biophys Acta. 1987 Jan 26;896(2):153–164. doi: 10.1016/0005-2736(87)90175-1. [DOI] [PubMed] [Google Scholar]
- Rintoul D. A., Welti R. Thermotropic behavior of mixtures of glycosphingolipids and phosphatidylcholine: effect of monovalent cations on sulfatide and galactosylceramide. Biochemistry. 1989 Jan 10;28(1):26–31. doi: 10.1021/bi00427a005. [DOI] [PubMed] [Google Scholar]
- Ruocco M. J., Shipley G. G., Oldfield E. Galactocerebroside-phospholipid interactions in bilayer membranes. Biophys J. 1983 Jul;43(1):91–101. doi: 10.1016/S0006-3495(83)84327-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sackmann E. The seventh Datta Lecture. Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions. FEBS Lett. 1994 Jun 6;346(1):3–16. doi: 10.1016/0014-5793(94)00484-6. [DOI] [PubMed] [Google Scholar]
- Sargiacomo M., Sudol M., Tang Z., Lisanti M. P. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol. 1993 Aug;122(4):789–807. doi: 10.1083/jcb.122.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnur J. M. Lipid tubules: a paradigm for molecularly engineered structures. Science. 1993 Dec 10;262(5140):1669–1676. doi: 10.1126/science.262.5140.1669. [DOI] [PubMed] [Google Scholar]
- Seifert U. Curvature-induced lateral phase segregation in two-component vesicles. Phys Rev Lett. 1993 Mar 1;70(9):1335–1338. doi: 10.1103/PhysRevLett.70.1335. [DOI] [PubMed] [Google Scholar]
- Thompson T. E., Allietta M., Brown R. E., Johnson M. L., Tillack T. W. Organization of ganglioside GM1 in phosphatidylcholine bilayers. Biochim Biophys Acta. 1985 Jul 25;817(2):229–237. doi: 10.1016/0005-2736(85)90024-0. [DOI] [PubMed] [Google Scholar]
- Thompson T. E., Tillack T. W. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem. 1985;14:361–386. doi: 10.1146/annurev.bb.14.060185.002045. [DOI] [PubMed] [Google Scholar]
- Tillack T. W., Wong M., Allietta M., Thompson T. E. Organization of the glycosphingolipid asialo-GM1 in phosphatidylcholine bilayers. Biochim Biophys Acta. 1982 Oct 7;691(2):261–273. doi: 10.1016/0005-2736(82)90415-1. [DOI] [PubMed] [Google Scholar]
- Witter B., Debuch H., Klein H. Lipid investigation of central and peripheral nervous system in connatal Pelizaeus-Merzbacher's disease. J Neurochem. 1980 Apr;34(4):957–962. doi: 10.1111/j.1471-4159.1980.tb09671.x. [DOI] [PubMed] [Google Scholar]
- Yao H., Matuoka S., Tenchov B., Hatta I. Metastable ripple phase of fully hydrated dipalmitoylphosphatidylcholine as studied by small angle x-ray scattering. Biophys J. 1991 Jan;59(1):252–255. doi: 10.1016/S0006-3495(91)82216-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yunis E. J., Lee R. E. Tubules of globoid leukodystrophy: a right-handed helix. Science. 1970 Jul 3;169(3940):64–66. doi: 10.1126/science.169.3940.64. [DOI] [PubMed] [Google Scholar]





