Abstract
Absorption and fluorescence spectra of the C-phycocyanin beta-subunit were quantitatively deconvoluted into component spectra of the beta-84 and beta-155 chromophores. The deconvolution procedure was based on a theoretical treatment of polarization properties. Four kinds of spectra (absorption, emission, emission polarization, and excitation polarization) measured on C-phycocyanin isolated from the cyanobacterium Mastigocladus laminosus were used as the experimental data set. Without any assumption of spectral shape, the absorption and fluorescence spectra of both chromophores were unambiguously resolved and their fluorescence quantum yields were evaluated. By combining the spectra of the alpha-subunit, independently measured, with the resolved spectra of the beta-subunit, the fluorescence and fluorescence polarization spectra and the fluorescence quantum yield of the monomer were estimated; they agree with experimental values to within an acceptable error. Further, the matrix of energy transfer rates in the monomer was estimated; it gave a significantly different result (by up to 40%) from previously estimated ones.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Demidov A. A., Borisov A. Y. Computer simulation of energy migration in the C-phycocyanin of the blue-green algae Agmenellum Quadruplicatum. Biophys J. 1993 May;64(5):1375–1384. doi: 10.1016/S0006-3495(93)81503-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duerring M., Huber R., Bode W., Ruembeli R., Zuber H. Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 A. J Mol Biol. 1990 Feb 5;211(3):633–644. doi: 10.1016/0022-2836(90)90270-v. [DOI] [PubMed] [Google Scholar]
- Holzwarth A. R., Wendler J., Suter G. W. Studies on Chromophore Coupling in Isolated Phycobiliproteins: II. Picosecond Energy Transfer Kinetics and Time-Resolved Fluorescence Spectra of C-Phycocyanin from Synechococcus 6301 as a Function of the Aggregation State. Biophys J. 1987 Jan;51(1):1–12. doi: 10.1016/S0006-3495(87)83306-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schirmer T., Bode W., Huber R. Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 A resolution. A common principle of phycobilin-protein interaction. J Mol Biol. 1987 Aug 5;196(3):677–695. doi: 10.1016/0022-2836(87)90040-4. [DOI] [PubMed] [Google Scholar]
- Xia A. D., Zhu J. C., Jiang L. J., Li D. L., Zhang X. Y. Energy transfer kinetics in C-phycocyanin from cyanobacterium Westiellopsis prolifica studied by pump-probe techniques. Biochem Biophys Res Commun. 1991 Aug 30;179(1):558–564. doi: 10.1016/0006-291x(91)91407-4. [DOI] [PubMed] [Google Scholar]