Abstract
Analytical and numerical models were developed to describe fluorescence resonance energy transfer (RET) in crowded biological membranes. It was assumed that fluorescent donors were linked to membrane proteins and that acceptors were linked to membrane lipids. No restrictions were placed on the location of the donor within the protein or the partitioning of acceptors between the two leaflets of the bilayer; however, acceptors were excluded from the area occupied by proteins. Analytical equations were derived that give the average quantum yield of a donor at low protein concentrations. Monte Carlo simulations were used to generate protein and lipid distributions that were linked numerically with RET equations to determine the average quantum yield and the distribution of donor fluorescence lifetimes at high protein concentrations, up to 50% area fraction. The Monte Carlo results show such crowding always reduces the quantum yield, probably because crowding increases acceptor concentrations near donor-bearing proteins; the magnitude of the reduction increases monotonically with protein concentration. The Monte Carlo results also show that the distribution of fluorescence lifetimes can differ markedly, even for systems possessing the same average lifetime. The dependence of energy transfer on acceptor concentration, protein radius, donor position within the protein, and the fraction of acceptors in each leaflet was also examined. The model and results are directly applicable to the analysis of RET data obtained from biological membranes; their application should result in a more complete and accurate determination of the structures of membrane components.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abney J. R., Scalettar B. A., Owicki J. C. Mutual diffusion of interacting membrane proteins. Biophys J. 1989 Aug;56(2):315–326. doi: 10.1016/S0006-3495(89)82678-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler D., Weeks J. D., Andersen H. C. Van der waals picture of liquids, solids, and phase transformations. Science. 1983 May 20;220(4599):787–794. doi: 10.1126/science.220.4599.787. [DOI] [PubMed] [Google Scholar]
- Corbalan-Garcia S., Teruel J. A., Gomez-Fernandez J. C. Intramolecular distances within the Ca(2+)-ATPase from sarcoplasmic reticulum as estimated through fluorescence energy transfer between probes. Eur J Biochem. 1993 Oct 15;217(2):737–744. doi: 10.1111/j.1432-1033.1993.tb18300.x. [DOI] [PubMed] [Google Scholar]
- Dewey T. G., Datta M. M. Determination of the fractal dimension of membrane protein aggregates using fluorescence energy transfer. Biophys J. 1989 Aug;56(2):415–420. doi: 10.1016/S0006-3495(89)82687-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dewey T. G., Hammes G. G. Calculation on fluorescence resonance energy transfer on surfaces. Biophys J. 1980 Dec;32(3):1023–1035. doi: 10.1016/S0006-3495(80)85033-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairclough R. H., Cantor C. R. The use of singlet-singlet energy transfer to study macromolecular assemblies. Methods Enzymol. 1978;48:347–379. doi: 10.1016/s0076-6879(78)48019-x. [DOI] [PubMed] [Google Scholar]
- Fleming P. J., Koppel D. E., Lau A. L., Strittmatter P. Intramembrane position of the fluorescent tryptophanyl residue in membrane-bound cytochrome b5. Biochemistry. 1979 Nov 27;18(24):5458–5464. doi: 10.1021/bi00591a031. [DOI] [PubMed] [Google Scholar]
- Gutierrez-Merino C. Quantitation of the Förster energy transfer for two-dimensional systems. II. Protein distribution and aggregation state in biological membranes. Biophys Chem. 1981 Nov;14(3):259–266. doi: 10.1016/0301-4622(81)85026-0. [DOI] [PubMed] [Google Scholar]
- Jan N., Lookman T., Pink D. A. On computer simulation methods used to study models of two-component lipid bilayers. Biochemistry. 1984 Jul 3;23(14):3227–3231. doi: 10.1021/bi00309a017. [DOI] [PubMed] [Google Scholar]
- Johnson D. A., Cushman R., Malekzadeh R. Orientation of cobra alpha-toxin on the nicotinic acetylcholine receptor. Fluorescence studies. J Biol Chem. 1990 May 5;265(13):7360–7368. [PubMed] [Google Scholar]
- Kleinfeld A. M., Lukacovic M. F. Energy-transfer study of cytochrome b5 using the anthroyloxy fatty acid membrane probes. Biochemistry. 1985 Apr 9;24(8):1883–1890. doi: 10.1021/bi00329a012. [DOI] [PubMed] [Google Scholar]
- Kleinfeld A. M. Tryptophan imaging of membrane proteins. Biochemistry. 1985 Apr 9;24(8):1874–1882. doi: 10.1021/bi00329a011. [DOI] [PubMed] [Google Scholar]
- Koppel D. E., Fleming P. J., Strittmatter P. Intramembrane positions of membrane-bound chromophores determined by excitation energy transfer. Biochemistry. 1979 Nov 27;18(24):5450–5457. doi: 10.1021/bi00591a030. [DOI] [PubMed] [Google Scholar]
- Kubitscheck U., Schweitzer-Stenner R., Arndt-Jovin D. J., Jovin T. M., Pecht I. Distribution of type I Fc epsilon-receptors on the surface of mast cells probed by fluorescence resonance energy transfer. Biophys J. 1993 Jan;64(1):110–120. doi: 10.1016/S0006-3495(93)81345-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCloskey M. A., Poo M. M. Rates of membrane-associated reactions: reduction of dimensionality revisited. J Cell Biol. 1986 Jan;102(1):88–96. doi: 10.1083/jcb.102.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitra B., Hammes G. G. Membrane-protein structural mapping of chloroplast coupling factor in asolectin vesicles. Biochemistry. 1990 Oct 23;29(42):9879–9884. doi: 10.1021/bi00494a018. [DOI] [PubMed] [Google Scholar]
- Saxton M. J. Lateral diffusion in an archipelago. Distance dependence of the diffusion coefficient. Biophys J. 1989 Sep;56(3):615–622. doi: 10.1016/S0006-3495(89)82708-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaklai N., Yguerabide J., Ranney H. M. Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry. 1977 Dec 13;16(25):5585–5592. doi: 10.1021/bi00644a031. [DOI] [PubMed] [Google Scholar]
- Snyder B., Freire E. Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions. Biophys J. 1982 Nov;40(2):137–148. doi: 10.1016/S0006-3495(82)84468-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stefanova H. I., Mata A. M., Gore M. G., East J. M., Lee A. G. Labeling the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum at Glu-439 with 5-(bromomethyl)fluorescein. Biochemistry. 1993 Jun 15;32(23):6095–6103. doi: 10.1021/bi00074a022. [DOI] [PubMed] [Google Scholar]
- Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–846. doi: 10.1146/annurev.bi.47.070178.004131. [DOI] [PubMed] [Google Scholar]
- Valenzuela C. F., Weign P., Yguerabide J., Johnson D. A. Transverse distance between the membrane and the agonist binding sites on the Torpedo acetylcholine receptor: a fluorescence study. Biophys J. 1994 Mar;66(3 Pt 1):674–682. doi: 10.1016/s0006-3495(94)80841-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolber P. K., Hudson B. S. An analytic solution to the Förster energy transfer problem in two dimensions. Biophys J. 1979 Nov;28(2):197–210. doi: 10.1016/S0006-3495(79)85171-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yguerabide J. Theory for establishing proximity relations in biological membranes by excitation energy transfer measurements. Biophys J. 1994 Mar;66(3 Pt 1):683–693. doi: 10.1016/s0006-3495(94)80842-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng Y., Shopes B., Holowka D., Baird B. Conformations of IgE bound to its receptor Fc epsilon RI and in solution. Biochemistry. 1991 Sep 24;30(38):9125–9132. doi: 10.1021/bi00102a002. [DOI] [PubMed] [Google Scholar]