Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 May;68(5):2041–2048. doi: 10.1016/S0006-3495(95)80382-6

DNA minor groove binding of cross-linked lexitropsins: experimental conditions required to observe the covalently linked WPPW (groove wall-peptide-peptide-groove wall) motif.

Y H Chen 1, J W Lown 1
PMCID: PMC1282107  PMID: 7612846

Abstract

A theoretical analysis of binding interactions between covalently cross-linked lexitropsins and DNA is undertaken, in which a novel cyclic symmetric 2:2 dimeric lexitropsin-DNA-binding model is proposed. Applicability of commonly used techniques including NMR, quantitative footprinting, CD, and ethidium fluorometry to differentiate the covalently linked WPPW (groove Wall-Peptide-Peptide-groove Wall) from a 2:2 cross-linked lexitropsin-DNA duplex structure is examined.

Full text

PDF
2041

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chipman D. M., Sharon N. Mechanism of lysozyme action. Science. 1969 Aug 1;165(3892):454–465. doi: 10.1126/science.165.3892.454. [DOI] [PubMed] [Google Scholar]
  2. Kopka M. L., Yoon C., Goodsell D., Pjura P., Dickerson R. E. Binding of an antitumor drug to DNA, Netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G. J Mol Biol. 1985 Jun 25;183(4):553–563. doi: 10.1016/0022-2836(85)90171-8. [DOI] [PubMed] [Google Scholar]
  3. Lown J. W. Lexitropsins in antiviral drug development. Antiviral Res. 1992 Mar;17(3):179–196. doi: 10.1016/0166-3542(92)90040-c. [DOI] [PubMed] [Google Scholar]
  4. Lown J. W. Lexitropsins: rational design of DNA sequence reading agents as novel anti-cancer agents and potential cellular probes. Anticancer Drug Des. 1988 Jun;3(1):25–40. [PubMed] [Google Scholar]
  5. Mrksich M., Wade W. S., Dwyer T. J., Geierstanger B. H., Wemmer D. E., Dervan P. B. Antiparallel side-by-side dimeric motif for sequence-specific recognition in the minor groove of DNA by the designed peptide 1-methylimidazole-2-carboxamide netropsin. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7586–7590. doi: 10.1073/pnas.89.16.7586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Page M. I., Jencks W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1678–1683. doi: 10.1073/pnas.68.8.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pelton J. G., Wemmer D. E. Structural characterization of a 2:1 distamycin A.d(CGCAAATTGGC) complex by two-dimensional NMR. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5723–5727. doi: 10.1073/pnas.86.15.5723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Zimmer C., Wähnert U. Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog Biophys Mol Biol. 1986;47(1):31–112. doi: 10.1016/0079-6107(86)90005-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES