Abstract
A clone of human HeLa cells stably transfected with mouse connexin40 DNA was used to examine gap junctions. Two separate cells were brought into physical contact with each other ("induced cell pair") to allow insertion of gap junction channels and, hence, formation of a gap junction. The intercellular current flow was measured with a dual voltage-clamp method. This approach enabled us to study the electrical properties of gap junction channels (cell pairs with a single channel) and gap junctions (cell pairs with many channels). We found that single channels exhibited multiple conductances, a main state (gamma j(main state)), several substates (gamma j(substates)), a residual state (gamma j (residual state)), and a closed state (gamma j(closed state)). The gamma j(main state) was 198 pS, and gamma j(residual state) was 36 pS (temperature, 36-37 degrees C; pipette solution, potassium aspartate). Both properties were insensitive to transjunctional voltage, Vj. The transitions between the closed state and an open state (i.e., residual state, substate, or main state) were slow (15-45 ms); those between the residual state and a substate or the main state were fast (1-2 ms). Under steady-state conditions, the open channel probability, Po, decreased in a sigmoidal manner from 1 to 0 (Boltzmann fit: Vj,o = -44 mV; z = 6). The temperature coefficient, Q10, for gamma j(main state) and gamma j(residual state) was 1.2 and 1.3, respectively (p < 0.001; range 15-40 degrees C). This difference suggests interactions between ions and channel structure in case of gamma j(residual state). In cell pairs with many channels, the gap junction conductance at steady state, gj, exhibited a bell-shaped dependency from Vj (Boltzmann fit, negative Vj, Vj,o = -45 mV, gj(min) = 0.24; positive Vj, Vj,o = 49 mV, gj(min) = 0.26; z = 6). We conclude that each channel is controlled by two types of gates, a fast one responsible for Vj gating and involving transitions between open states (i.e., residual state, substates, main state), and a slow one involving transitions between the closed state and an open state.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bastide B., Neyses L., Ganten D., Paul M., Willecke K., Traub O. Gap junction protein connexin40 is preferentially expressed in vascular endothelium and conductive bundles of rat myocardium and is increased under hypertensive conditions. Circ Res. 1993 Dec;73(6):1138–1149. doi: 10.1161/01.res.73.6.1138. [DOI] [PubMed] [Google Scholar]
- Bennett M. V., Verselis V. K. Biophysics of gap junctions. Semin Cell Biol. 1992 Feb;3(1):29–47. doi: 10.1016/s1043-4682(10)80006-6. [DOI] [PubMed] [Google Scholar]
- Beyer E. C., Reed K. E., Westphale E. M., Kanter H. L., Larson D. M. Molecular cloning and expression of rat connexin40, a gap junction protein expressed in vascular smooth muscle. J Membr Biol. 1992 Apr;127(1):69–76. doi: 10.1007/BF00232759. [DOI] [PubMed] [Google Scholar]
- Bruzzone R., Haefliger J. A., Gimlich R. L., Paul D. L. Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol Biol Cell. 1993 Jan;4(1):7–20. doi: 10.1091/mbc.4.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bukauskas F. F., Kempf C., Weingart R. Cytoplasmic bridges and gap junctions in an insect cell line (Aedes albopictus). Exp Physiol. 1992 Nov;77(6):903–911. doi: 10.1113/expphysiol.1992.sp003657. [DOI] [PubMed] [Google Scholar]
- Bukauskas F. F., Weingart R. Multiple conductance states of newly formed single gap junction channels between insect cells. Pflugers Arch. 1993 Apr;423(1-2):152–154. doi: 10.1007/BF00374973. [DOI] [PubMed] [Google Scholar]
- Bukauskas F. F., Weingart R. Temperature dependence of gap junction properties in neonatal rat heart cells. Pflugers Arch. 1993 Apr;423(1-2):133–139. doi: 10.1007/BF00374970. [DOI] [PubMed] [Google Scholar]
- Bukauskas F., Kempf C., Weingart R. Electrical coupling between cells of the insect Aedes albopictus. J Physiol. 1992 Mar;448:321–337. doi: 10.1113/jphysiol.1992.sp019044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chanson M., Chandross K. J., Rook M. B., Kessler J. A., Spray D. C. Gating characteristics of a steeply voltage-dependent gap junction channel in rat Schwann cells. J Gen Physiol. 1993 Nov;102(5):925–946. doi: 10.1085/jgp.102.5.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Y. H., DeHaan R. L. Multiple-channel conductance states and voltage regulation of embryonic chick cardiac gap junctions. J Membr Biol. 1992 Apr;127(2):95–111. doi: 10.1007/BF00233282. [DOI] [PubMed] [Google Scholar]
- De Mazière A., Analbers L., Jongsma H. J., Gros D. Immunoelectron microscopic visualization of the gap junction protein connexin 40 in the mammalian heart. Eur J Morphol. 1993 Mar-Jun;31(1-2):51–54. [PubMed] [Google Scholar]
- DeVries S. H., Schwartz E. A. Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J Physiol. 1992 Jan;445:201–230. doi: 10.1113/jphysiol.1992.sp018920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckert R., Dunina-Barkovskaya A., Hülser D. F. Biophysical characterization of gap-junction channels in HeLa cells. Pflugers Arch. 1993 Aug;424(3-4):335–342. doi: 10.1007/BF00384361. [DOI] [PubMed] [Google Scholar]
- Gourdie R. G., Severs N. J., Green C. R., Rothery S., Germroth P., Thompson R. P. The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system. J Cell Sci. 1993 Aug;105(Pt 4):985–991. doi: 10.1242/jcs.105.4.985. [DOI] [PubMed] [Google Scholar]
- Gros D., Jarry-Guichard T., Ten Velde I., de Maziere A., van Kempen M. J., Davoust J., Briand J. P., Moorman A. F., Jongsma H. J. Restricted distribution of connexin40, a gap junctional protein, in mammalian heart. Circ Res. 1994 May;74(5):839–851. doi: 10.1161/01.res.74.5.839. [DOI] [PubMed] [Google Scholar]
- Haefliger J. A., Bruzzone R., Jenkins N. A., Gilbert D. J., Copeland N. G., Paul D. L. Four novel members of the connexin family of gap junction proteins. Molecular cloning, expression, and chromosome mapping. J Biol Chem. 1992 Jan 25;267(3):2057–2064. [PubMed] [Google Scholar]
- Hennemann H., Suchyna T., Lichtenberg-Fraté H., Jungbluth S., Dahl E., Schwarz J., Nicholson B. J., Willecke K. Molecular cloning and functional expression of mouse connexin40, a second gap junction gene preferentially expressed in lung. J Cell Biol. 1992 Jun;117(6):1299–1310. doi: 10.1083/jcb.117.6.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanter H. L., Saffitz J. E., Beyer E. C. Cardiac myocytes express multiple gap junction proteins. Circ Res. 1992 Feb;70(2):438–444. doi: 10.1161/01.res.70.2.438. [DOI] [PubMed] [Google Scholar]
- Moreno A. P., Rook M. B., Fishman G. I., Spray D. C. Gap junction channels: distinct voltage-sensitive and -insensitive conductance states. Biophys J. 1994 Jul;67(1):113–119. doi: 10.1016/S0006-3495(94)80460-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Musil L. S., Cunningham B. A., Edelman G. M., Goodenough D. A. Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and -deficient cell lines. J Cell Biol. 1990 Nov;111(5 Pt 1):2077–2088. doi: 10.1083/jcb.111.5.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suchyna T. M., Xu L. X., Gao F., Fourtner C. R., Nicholson B. J. Identification of a proline residue as a transduction element involved in voltage gating of gap junctions. Nature. 1993 Oct 28;365(6449):847–849. doi: 10.1038/365847a0. [DOI] [PubMed] [Google Scholar]
- Traub O., Eckert R., Lichtenberg-Fraté H., Elfgang C., Bastide B., Scheidtmann K. H., Hülser D. F., Willecke K. Immunochemical and electrophysiological characterization of murine connexin40 and -43 in mouse tissues and transfected human cells. Eur J Cell Biol. 1994 Jun;64(1):101–112. [PubMed] [Google Scholar]
- Veenstra R. D., Wang H. Z., Beyer E. C., Ramanan S. V., Brink P. R. Connexin37 forms high conductance gap junction channels with subconductance state activity and selective dye and ionic permeabilities. Biophys J. 1994 Jun;66(6):1915–1928. doi: 10.1016/S0006-3495(94)80985-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weingart R., Bukauskas F. F. Gap junction channels of insects exhibit a residual conductance. Pflugers Arch. 1993 Jul;424(2):192–194. doi: 10.1007/BF00374611. [DOI] [PubMed] [Google Scholar]
- Weingart R. Electrical properties of the nexal membrane studied in rat ventricular cell pairs. J Physiol. 1986 Jan;370:267–284. doi: 10.1113/jphysiol.1986.sp015934. [DOI] [PMC free article] [PubMed] [Google Scholar]