Abstract
Formation of well ordered lamellar subgel (SGII) phase in aqueous dispersions of L-dipalmitoylphosphatidylcholine upon cooling from the lamellar gel phase, without low-temperature equilibration, is observed in real time using synchrotron x-ray diffraction. It has the same lamellar repeat period as the gel phase from which it was formed but differs in its wide-angle diffraction pattern. The SGII phase forms at about 7 degrees C upon cooling at 2 degrees C/min. In temperature jump experiments at 1 degree C/s from 50 to -5 degrees C, the relaxation time of the lamellar gel-SGII transition is found to be approximately 15 s. The conversion between the lamellar gel and SGII phase is cooperative and rapidly reversible. Upon heating, it coincides in temperature with an endothermic event with a calorimetric enthalpy of 0.35 kcal/mol, the so-called sub-subtransition. Similar sub-subtransitions are also observed calorimetrically at temperatures approximately 10 degrees C below the subtransition, without low-temperature storage, in aqueous dispersions of L-dimyristoylphosphatidylcholine and L-distearoylphosphatidylcholine, but not in racemic DL-dipalmitoylphosphatidylcholine. The formation of the equilibrium lamellar crystalline Lc phase appears to take place only from within the SGII phase.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen S. C., Sturtevant J. M., Gaffney B. J. Scanning calorimetric evidence for a third phase transition in phosphatidylcholine bilayers. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5060–5063. doi: 10.1073/pnas.77.9.5060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOWELL L. G., MOLINE S. W., RINFRET A. P. A low-temperature x-ray diffraction study of ice structures formed in aqueous gelatin gels. Biochim Biophys Acta. 1962 May 7;59:158–167. doi: 10.1016/0006-3002(62)90706-0. [DOI] [PubMed] [Google Scholar]
- Füldner H. H. Characterization of a third phase transition in multilamellar dipalmitoyllecithin liposomes. Biochemistry. 1981 Sep 29;20(20):5707–5710. doi: 10.1021/bi00523a011. [DOI] [PubMed] [Google Scholar]
- Laggner P., Lohner K., Degovics G., Müller K., Schuster A. Structure and thermodynamics of the dihexadecylphosphatidylcholine-water system. Chem Phys Lipids. 1987 Jun;44(1):31–60. doi: 10.1016/0009-3084(87)90004-1. [DOI] [PubMed] [Google Scholar]
- Lewis R. N., Mak N., McElhaney R. N. A differential scanning calorimetric study of the thermotropic phase behavior of model membranes composed of phosphatidylcholines containing linear saturated fatty acyl chains. Biochemistry. 1987 Sep 22;26(19):6118–6126. doi: 10.1021/bi00393a026. [DOI] [PubMed] [Google Scholar]
- Lewis R. N., McElhaney R. N. Subgel phases of n-saturated diacylphosphatidylcholines: a Fourier-transform infrared spectroscopic study. Biochemistry. 1990 Aug 28;29(34):7946–7953. doi: 10.1021/bi00486a024. [DOI] [PubMed] [Google Scholar]
- Ruocco M. J., Siminovitch D. J., Griffin R. G. Comparative study of the gel phases of ether- and ester-linked phosphatidylcholines. Biochemistry. 1985 May 7;24(10):2406–2411. doi: 10.1021/bi00331a003. [DOI] [PubMed] [Google Scholar]
- Sanderson P. W., Williams W. P., Cunningham B. A., Wolfe D. H., Lis L. J. The effect of ice on membrane lipid phase behaviour. Biochim Biophys Acta. 1993 Jun 5;1148(2):278–284. doi: 10.1016/0005-2736(93)90140-u. [DOI] [PubMed] [Google Scholar]
- Silvius J. R., Lyons M., Yeagle P. L., O'Leary T. J. Thermotropic properties of bilayers containing branched-chain phospholipids. Calorimetric, Raman, and 31P NMR studies. Biochemistry. 1985 Sep 24;24(20):5388–5395. doi: 10.1021/bi00341a017. [DOI] [PubMed] [Google Scholar]
- Slater J. L., Huang C. Scanning calorimetry reveals a new phase transition in L-alpha-dipalmitoylphosphatidylcholine. Biophys J. 1987 Oct;52(4):667–670. doi: 10.1016/S0006-3495(87)83260-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenchov B. G., Lis L. J., Quinn P. J. Mechanism and kinetics of the subtransition in hydrated L-dipalmitoylphosphatidylcholine. Biochim Biophys Acta. 1987 Feb 12;897(1):143–151. doi: 10.1016/0005-2736(87)90322-1. [DOI] [PubMed] [Google Scholar]
- Tenchov B. G., Yao H., Hatta I. Time-resolved x-ray diffraction and calorimetric studies at low scan rates: I. Fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases. Biophys J. 1989 Oct;56(4):757–768. doi: 10.1016/S0006-3495(89)82723-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tristram-Nagle S., Suter R. M., Sun W. J., Nagle J. F. Kinetics of subgel formation in DPPC: X-ray diffraction proves nucleation-growth hypothesis. Biochim Biophys Acta. 1994 Apr 20;1191(1):14–20. doi: 10.1016/0005-2736(94)90227-5. [DOI] [PubMed] [Google Scholar]
- Tristram-Nagle S., Wiener M. C., Yang C. P., Nagle J. F. Kinetics of the subtransition in dipalmitoylphosphatidylcholine. Biochemistry. 1987 Jul 14;26(14):4288–4294. doi: 10.1021/bi00388a016. [DOI] [PubMed] [Google Scholar]
- Yang CP, Nagle JF. Phase transformations in lipids follow classical kinetics with small fractional dimensionalities. Phys Rev A Gen Phys. 1988 May 15;37(10):3993–4000. doi: 10.1103/physreva.37.3993. [DOI] [PubMed] [Google Scholar]
