Abstract
Nitroxyl free radical electron spin relaxation times for spin-labeled low-spin methemoglobins were measured between 6 and 120 K by two-pulse electron spin echo spectroscopy and by saturation recovery electron paramagnetic resonance (EPR). Spin-lattice relaxation times for cyano-methemoglobin and imidazole-methemoglobin were measured between 8 and 25 K by saturation recovery and between 4.2 and 20 K by electron spin echo. At low temperature the iron electron spin relaxation rates are slow relative to the iron-nitroxyl electron-electron spin-spin splitting. As temperature is increased, the relaxation rates for the Fe(III) become comparable to and then greater than the spin-spin splitting, which collapses the splitting in the continuous wave EPR spectra and causes an increase and then a decrease in the nitroxyl electron spin echo decay rate. Throughout the temperature range examined, interaction with the Fe(III) increases the spin lattice relaxation rate (1/T1) for the nitroxyl. The measured relaxation times for the Fe(III) were used to analyze the temperature-dependent changes in the spin echo decays and in the saturation recovery (T1) data for the interacting nitroxyl and to determine the interspin distance, r. The values of r for three spin-labeled methemoglobins were between 15 and 15.5 A, with good agreement between values obtained by electron spin echo and saturation recovery. Analysis of the nitroxyl spin echo and saturation recovery data also provides values of the iron relaxation rates at temperatures where the iron relaxation rates are too fast to measure directly by saturation recovery or electron spin echo spectroscopy. These results demonstrate the power of using time-domain EPR measurements to probe the distance between a slowly relaxing spin and a relatively rapidly relaxing metal in a protein.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen J. P., Colvin J. T., Stinson D. G., Flynn C. P., Stapleton H. J. Protein conformation from electron spin relaxation data. Biophys J. 1982 Jun;38(3):299–310. doi: 10.1016/S0006-3495(82)84562-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antholine W. E., Taketa F., Wang J. T., Manoharan P. T., Rifkind J. M. Interaction between bound cupric ion and spin-labeled cysteine beta-93 in human and horse hemoglobins. J Inorg Biochem. 1985 Oct;25(2):95–108. doi: 10.1016/0162-0134(85)80018-0. [DOI] [PubMed] [Google Scholar]
- Asakura T., Drott H. R. Evidence of heme-heme interaction in heme-spin-labeled hemoglobin. Biochem Biophys Res Commun. 1971 Sep;44(5):1199–1204. doi: 10.1016/s0006-291x(71)80213-9. [DOI] [PubMed] [Google Scholar]
- Asakura T., Lau P. W. Sequence of oxygen binding by hemoglobin. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5462–5465. doi: 10.1073/pnas.75.11.5462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asakura T., Tamura M., Shin M. Enzymatic reduction of spin-labeled ferrihemoglobin. J Biol Chem. 1972 Jun 10;247(11):3693–3694. [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Brocklehurst K., Little G. Reactions of papain and of low-molecular-weight thiols with some aromatic disulphides. 2,2'-Dipyridyl disulphide as a convenient active-site titrant for papain even in the presence of other thiols. Biochem J. 1973 May;133(1):67–80. doi: 10.1042/bj1330067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chien J. C., Dickinson L. C., Snyder F. W., Jr, Mayo K. H. Circular dichroism and spin-label studies of carp hemoglobin. J Mol Biol. 1980 Sep 5;142(1):75–91. doi: 10.1016/0022-2836(80)90207-7. [DOI] [PubMed] [Google Scholar]
- Chien J. C. Electron paramagnetic resonance crystallography of spin-labeled hemoglobin-protein fine structures. J Mol Biol. 1979 Sep 25;133(3):385–398. doi: 10.1016/0022-2836(79)90399-1. [DOI] [PubMed] [Google Scholar]
- Di Iorio E. E. Preparation of derivatives of ferrous and ferric hemoglobin. Methods Enzymol. 1981;76:57–72. doi: 10.1016/0076-6879(81)76114-7. [DOI] [PubMed] [Google Scholar]
- Drews A. R., Thayer B. D., Stapleton H. J., Wagner G. C., Giugliarelli G., Cannistraro S. Electron spin relaxation measurements on the blue-copper protein plastocyanin: Deviations from a power law temperature dependence. Biophys J. 1990 Jan;57(1):157–162. doi: 10.1016/S0006-3495(90)82517-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grassetti D. R., Murray J. F., Jr Determination of sulfhydryl groups with 2,2'- or 4,4'-dithiodipyridine. Arch Biochem Biophys. 1967 Mar;119(1):41–49. doi: 10.1016/0003-9861(67)90426-2. [DOI] [PubMed] [Google Scholar]
- Hartmann D., Philipp R., Schmadel K., Birktoft J. J., Banaszak L. J., Trommer W. E. Spatial arrangement of coenzyme and substrates bound to L-3-hydroxyacyl-CoA dehydrogenase as studied by spin-labeled analogues of NAD+ and CoA. Biochemistry. 1991 Mar 19;30(11):2782–2790. doi: 10.1021/bi00225a007. [DOI] [PubMed] [Google Scholar]
- Ho C., Baldassare J. J., Charache S. Electron paramagnetic resonance studies of spin-labeled hemoglobins and their implications to the nature of cooperative oxygen binding to hemoglobin. Proc Natl Acad Sci U S A. 1970 Jul;66(3):722–729. doi: 10.1073/pnas.66.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manoharan P. T., Wang J. T., Alston K., Rifkind J. M. Spin label probes of the environment of cysteine beta-93 in hemoglobin. Hemoglobin. 1990;14(1):41–67. doi: 10.3109/03630269009002254. [DOI] [PubMed] [Google Scholar]
- Marden M. C., Kiger L., Kister J., Bohn B., Poyart C. Coupling of ferric iron spin and allosteric equilibrium in hemoglobin. Biophys J. 1991 Oct;60(4):770–776. doi: 10.1016/S0006-3495(91)82111-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConnell H. M., Boeyens J. C. Spin-label determination of enzyme symmetry. J Phys Chem. 1967 Jan;71(1):12–14. doi: 10.1021/j100860a002. [DOI] [PubMed] [Google Scholar]
- McConnell H. M., Deal W., Ogata R. T. Spin-labeled hemoglobin derivatives in solution, polycrystalline suspensions, and single crystals. Biochemistry. 1969 Jun;8(6):2580–2585. doi: 10.1021/bi00834a048. [DOI] [PubMed] [Google Scholar]
- McConnell H. M., Hamilton C. L. Spin-labeled hemoglobin derivatives in solution and in single crystals. Proc Natl Acad Sci U S A. 1968 Jul;60(3):776–781. doi: 10.1073/pnas.60.3.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConnell H. M. Spin-label studies of cooperative oxygen binding to hemoglobin. Annu Rev Biochem. 1971;40:227–236. doi: 10.1146/annurev.bi.40.070171.001303. [DOI] [PubMed] [Google Scholar]
- Moffat J. K. Spin-labelled haemoglobins: a structural interpretation of electron paramagnetic resonance spectra based on X-ray analysis. J Mol Biol. 1971 Jan 28;55(2):135–146. doi: 10.1016/0022-2836(71)90187-2. [DOI] [PubMed] [Google Scholar]
- Ogata R. T., McConnell H. M. The binding of a spin-labeled triphosphate to hemoglobin. Cold Spring Harb Symp Quant Biol. 1972;36:325–336. doi: 10.1101/sqb.1972.036.01.043. [DOI] [PubMed] [Google Scholar]
- SCHELER W., SCHOFFA G., JUNG F. Lichtabsorption und paramagnetische Suszeptibilität bei Derivaten des Pferde- und Chironomus-Methämoglobins sowie des Pferde-Metmyoglobins. Biochem Z. 1957;329(3):232–246. [PubMed] [Google Scholar]
- Shaanan B. Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983 Nov 25;171(1):31–59. doi: 10.1016/s0022-2836(83)80313-1. [DOI] [PubMed] [Google Scholar]
- Steinhoff H. J. Residual motion of hemoglobin-bound spin labels and protein dynamics: viscosity dependence of the rotational correlation times. Eur Biophys J. 1990;18(1):57–62. doi: 10.1007/BF00185420. [DOI] [PubMed] [Google Scholar]

