Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Jun;68(6):2543–2555. doi: 10.1016/S0006-3495(95)80437-6

Understanding the cytochrome c oxidase proton pump: thermodynamics of redox linkage.

S M Musser 1, S I Chan 1
PMCID: PMC1282164  PMID: 7647257

Abstract

The cytochrome c oxidase complex (CcO) catalyzes the four-electron reduction of dioxygen to water by using electrons from ferrocytochrome c. Redox free energy released in this highly exergonic process is utilized to drive the translocation of protons across a transmembrane electrochemical gradient. Although numerous chemical models of proton pumping have been developed, few attempts have been made to explain the stepwise transfer of energy in the context of proposed protein conformational changes. A model is described that seeks to clarify the thermodynamics of the proton pumping function of CcO and that illustrates the importance of electron and proton gating to prevent the occurrence of the more exergonic electron leak and proton slip reactions. The redox energy of the CcO-membrane system is formulated in terms of a multidimensional energy surface projected into two dimensions, a nuclear coordinate associated with electron transfer and a nuclear coordinate associated with elements of the proton pump. This model provides an understanding of how a transmembrane electrochemical gradient affects the efficiency of the proton pumping process. Specifically, electron leak and proton slip reactions become kinetically viable as a result of the greater energy barriers that develop for the desired reactions in the presence of a transmembrane potential.

Full text

PDF
2543

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonini G., Malatesta F., Sarti P., Brunori M. Control of cytochrome oxidase activity. A transient spectroscopy study. J Biol Chem. 1991 Jul 15;266(20):13193–13202. [PubMed] [Google Scholar]
  2. Babcock G. T., Callahan P. M. Redox-linked hydrogen bond strength changes in cytochrome a: implications for a cytochrome oxidase proton pump. Biochemistry. 1983 May 10;22(10):2314–2319. doi: 10.1021/bi00279a002. [DOI] [PubMed] [Google Scholar]
  3. Babcock G. T., Wikström M. Oxygen activation and the conservation of energy in cell respiration. Nature. 1992 Mar 26;356(6367):301–309. doi: 10.1038/356301a0. [DOI] [PubMed] [Google Scholar]
  4. Bisson R., Steffens G. C., Capaldi R. A., Buse G. Mapping of the cytochrome c binding site on cytochrome c oxidase. FEBS Lett. 1982 Aug 2;144(2):359–363. doi: 10.1016/0014-5793(82)80672-8. [DOI] [PubMed] [Google Scholar]
  5. Blair D. F., Ellis W. R., Jr, Wang H., Gray H. B., Chan S. I. Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependences of the cytochrome potentials. Characterization of site-site interactions. J Biol Chem. 1986 Sep 5;261(25):11524–11537. [PubMed] [Google Scholar]
  6. Brudvig G. W., Stevens T. H., Chan S. I. Reactions of nitric oxide with cytochrome c oxidase. Biochemistry. 1980 Nov 11;19(23):5275–5285. doi: 10.1021/bi00564a020. [DOI] [PubMed] [Google Scholar]
  7. Brunori M., Antonini G., Colosimo A., Malatesta F., Sarti P., Jones M. G., Wilson M. T. Stopped-flow studies of cytochrome oxidase reconstituted into liposomes: proton pumping and control of activity. J Inorg Biochem. 1985 Mar-Apr;23(3-4):373–379. doi: 10.1016/0162-0134(85)85048-0. [DOI] [PubMed] [Google Scholar]
  8. Brunori M., Antonini G., Malatesta F., Sarti P., Wilson M. T. Structure and function of cytochrome oxidase: a second look. Adv Inorg Biochem. 1988;7:93–153. [PubMed] [Google Scholar]
  9. Brzezinski P., Malmström B. G. The mechanism of electron gating in proton pumping cytochrome c oxidase: the effect of pH and temperature on internal electron transfer. Biochim Biophys Acta. 1987 Oct 29;894(1):29–38. doi: 10.1016/0005-2728(87)90209-x. [DOI] [PubMed] [Google Scholar]
  10. Calhoun M. W., Thomas J. W., Gennis R. B. The cytochrome oxidase superfamily of redox-driven proton pumps. Trends Biochem Sci. 1994 Aug;19(8):325–330. doi: 10.1016/0968-0004(94)90071-x. [DOI] [PubMed] [Google Scholar]
  11. Casey R. P., Thelen M., Azzi A. Dicyclohexylcarbodiimide inhibits proton translocation by cytochrome c oxidase. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1044–1051. doi: 10.1016/s0006-291x(79)80013-3. [DOI] [PubMed] [Google Scholar]
  12. Chan S. I., Li P. M. Cytochrome c oxidase: understanding nature's design of a proton pump. Biochemistry. 1990 Jan 9;29(1):1–12. doi: 10.1021/bi00453a001. [DOI] [PubMed] [Google Scholar]
  13. DiBiase V. A., Prochaska L. J. Characterization of electron transfer and proton translocation activities in trypsin-treated bovine heart mitochondrial cytochrome c oxidase. Arch Biochem Biophys. 1985 Dec;243(2):668–677. doi: 10.1016/0003-9861(85)90545-4. [DOI] [PubMed] [Google Scholar]
  14. Fabian M., Thörnström P. E., Brzezinski P., Malmström B. G. Two-electron reduction is required for rapid internal electron transfer in resting, pulsed and oxygenated cytochrome c oxidase. FEBS Lett. 1987 Mar 23;213(2):396–400. doi: 10.1016/0014-5793(87)81529-6. [DOI] [PubMed] [Google Scholar]
  15. Gelles J., Blair D. F., Chan S. I. The proton-pumping site of cytochrome c oxidase: a model of its structure and mechanism. Biochim Biophys Acta. 1986;853(3-4):205–236. doi: 10.1016/0304-4173(87)90002-4. [DOI] [PubMed] [Google Scholar]
  16. Hill B. C. Modeling the sequence of electron transfer reactions in the single turnover of reduced, mammalian cytochrome c oxidase with oxygen. J Biol Chem. 1994 Jan 28;269(4):2419–2425. [PubMed] [Google Scholar]
  17. Hill B. C. The reaction of the electrostatic cytochrome c-cytochrome oxidase complex with oxygen. J Biol Chem. 1991 Feb 5;266(4):2219–2226. [PubMed] [Google Scholar]
  18. Larsen R. W., Pan L. P., Musser S. M., Li Z. Y., Chan S. I. Could CuB be the site of redox linkage in cytochrome c oxidase? Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):723–727. doi: 10.1073/pnas.89.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li P. M., Morgan J. E., Nilsson T., Ma M., Chan S. I. Heat treatment of cytochrome c oxidase perturbs the CuA site and affects proton pumping behavior. Biochemistry. 1988 Sep 20;27(19):7538–7546. doi: 10.1021/bi00419a054. [DOI] [PubMed] [Google Scholar]
  20. Malmström B. G. Rack-induced bonding in blue-copper proteins. Eur J Biochem. 1994 Aug 1;223(3):711–718. doi: 10.1111/j.1432-1033.1994.tb19044.x. [DOI] [PubMed] [Google Scholar]
  21. Millett F., de Jong C., Paulson L., Capaldi R. A. Identification of specific carboxylate groups on cytochrome c oxidase that are involved in binding cytochrome c. Biochemistry. 1983 Feb 1;22(3):546–552. doi: 10.1021/bi00272a004. [DOI] [PubMed] [Google Scholar]
  22. Musser S. M., Stowell M. H., Chan S. I. Comparison of ubiquinol and cytochrome c terminal oxidases. An alternative view. FEBS Lett. 1993 Jul 26;327(2):131–136. doi: 10.1016/0014-5793(93)80156-o. [DOI] [PubMed] [Google Scholar]
  23. Musser S. M., Stowell M. H., Chan S. I. Further comparison of ubiquinol and cytochrome c terminal oxidases. FEBS Lett. 1993 Dec 6;335(2):296–298. doi: 10.1016/0014-5793(93)80751-f. [DOI] [PubMed] [Google Scholar]
  24. Oliveberg M., Malmström B. G. Internal electron transfer in cytochrome c oxidase: evidence for a rapid equilibrium between cytochrome a and the bimetallic site. Biochemistry. 1991 Jul 23;30(29):7053–7057. doi: 10.1021/bi00243a003. [DOI] [PubMed] [Google Scholar]
  25. Proteau G., Wrigglesworth J. M., Nicholls P. Protonmotive functions of cytochrome c oxidase in reconstituted vesicles. Influence of turnover rate on 'proton translocation'. Biochem J. 1983 Jan 15;210(1):199–205. doi: 10.1042/bj2100199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  27. Rousseau D. L., Ching Y., Wang J. Proton translocation in cytochrome c oxidase: redox linkage through proximal ligand exchange on cytochrome a3. J Bioenerg Biomembr. 1993 Apr;25(2):165–176. doi: 10.1007/BF00762858. [DOI] [PubMed] [Google Scholar]
  28. Sigel E., Carafoli E. The charge stoichiometry of cytochrome c oxidase in the reconstituted system. J Biol Chem. 1979 Nov 10;254(21):10572–10574. [PubMed] [Google Scholar]
  29. Solioz M., Carafoli E., Ludwig B. The cytochrome c oxidase of Paracoccus denitrificans pumps protons in a reconstituted system. J Biol Chem. 1982 Feb 25;257(4):1579–1582. [PubMed] [Google Scholar]
  30. Stevens T. H., Martin C. T., Wang H., Brudvig G. W., Scholes C. P., Chan S. I. The nature of CuA in cytochrome c oxidase. J Biol Chem. 1982 Oct 25;257(20):12106–12113. [PubMed] [Google Scholar]
  31. Steverding D., Kadenbach B., Capitanio N., Papa S. Effect of chemical modification of lysine amino groups on redox and protonmotive activity of bovine heart cytochrome c oxidase reconstituted in phospholipid membranes. Biochemistry. 1990 Mar 27;29(12):2945–2950. doi: 10.1021/bi00464a009. [DOI] [PubMed] [Google Scholar]
  32. Trumpower B. L., Gennis R. B. Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu Rev Biochem. 1994;63:675–716. doi: 10.1146/annurev.bi.63.070194.003331. [DOI] [PubMed] [Google Scholar]
  33. Wang H., Blair D. F., Ellis W. R., Jr, Gray H. B., Chan S. I. Temperature dependence of the reduction potential of CuA in carbon monoxide inhibited cytochrome c oxidase. Biochemistry. 1986 Jan 14;25(1):167–171. doi: 10.1021/bi00349a024. [DOI] [PubMed] [Google Scholar]
  34. Wikstrom M. K. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature. 1977 Mar 17;266(5599):271–273. doi: 10.1038/266271a0. [DOI] [PubMed] [Google Scholar]
  35. Wikström M., Bogachev A., Finel M., Morgan J. E., Puustinen A., Raitio M., Verkhovskaya M., Verkhovsky M. I. Mechanism of proton translocation by the respiratory oxidases. The histidine cycle. Biochim Biophys Acta. 1994 Aug 30;1187(2):106–111. doi: 10.1016/0005-2728(94)90093-0. [DOI] [PubMed] [Google Scholar]
  36. Wikström M. Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping. Nature. 1989 Apr 27;338(6218):776–778. doi: 10.1038/338776a0. [DOI] [PubMed] [Google Scholar]
  37. Wikström M., Krab K. Cytochrome c oxidase is a proton pump: a rejoinder to recent criticism. FEBS Lett. 1978 Jul 1;91(1):8–14. doi: 10.1016/0014-5793(78)80006-4. [DOI] [PubMed] [Google Scholar]
  38. Wikström M., Morgan J. E. The dioxygen cycle. Spectral, kinetic, and thermodynamic characteristics of ferryl and peroxy intermediates observed by reversal of the cytochrome oxidase reaction. J Biol Chem. 1992 May 25;267(15):10266–10273. [PubMed] [Google Scholar]
  39. Woodruff W. H. Coordination dynamics of heme-copper oxidases. The ligand shuttle and the control and coupling of electron transfer and proton translocation. J Bioenerg Biomembr. 1993 Apr;25(2):177–188. doi: 10.1007/BF00762859. [DOI] [PubMed] [Google Scholar]
  40. van Verseveld H. W., Krab K., Stouthamer A. H. Proton pump coupled to cytochrome c oxidase in Paracoccus denitrificans. Biochim Biophys Acta. 1981 May 13;635(3):525–534. doi: 10.1016/0005-2728(81)90111-0. [DOI] [PubMed] [Google Scholar]
  41. van der Oost J., de Boer A. P., de Gier J. W., Zumft W. G., Stouthamer A. H., van Spanning R. J. The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol Lett. 1994 Aug 1;121(1):1–9. doi: 10.1111/j.1574-6968.1994.tb07067.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES