Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Jun;68(6):2580–2587. doi: 10.1016/S0006-3495(95)80441-8

Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces.

E Evans 1, K Ritchie 1, R Merkel 1
PMCID: PMC1282168  PMID: 7647261

Abstract

Adhesion and cytoskeletal structure are intimately related in biological cell function. Even with the vast amount of biological and biochemical data that exist, little is known at the molecular level about physical mechanisms involved in attachments between cells or about consequences of adhesion on the material structure. To expose physical actions at soft biological interfaces, we have combined an ultrasensitive transducer and reflection interference microscopy to image submicroscopic displacements of probe contact with a test surface under minuscule forces. The transducer is a cell-size membrane capsule pressurized by micropipette suction where displacement normal to the membrane under tension is proportional to the applied force. Pressure control of the tension tunes the sensitivity in operation over four orders of magnitude through a range of force from 0.01 pN up to the strength of covalent bonds (approximately 1000 pN)! As the surface probe, a microscopic bead is biochemically glued to the transducer with a densely-bound ligand that is indifferent to the test surface. Movements of the probe under applied force are resolved down to an accuracy of approximately 5 nm from the interference fringe pattern created by light reflected from the bead. With this arrangement, we show that local mechanical compliance of a cell surface can be measured at a displacement resolution set by structural fluctuations. When desired, a second ligand is bound sparsely to the probe for focal adhesion to specific receptors in the test surface. We demonstrate that monitoring fluctuations in probe position at low transducer stiffness enhances detection of molecular adhesion and activation of cytoskeletal structure. Subsequent loading of an attachment tests mechanical response of the receptor-substrate linkage throughout the force-driven process of detachment.

Full text

PDF
2580

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J. 1992 Feb;61(2):569–582. doi: 10.1016/S0006-3495(92)81860-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashkin A., Schütze K., Dziedzic J. M., Euteneuer U., Schliwa M. Force generation of organelle transport measured in vivo by an infrared laser trap. Nature. 1990 Nov 22;348(6299):346–348. doi: 10.1038/348346a0. [DOI] [PubMed] [Google Scholar]
  3. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  4. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  5. Drake B., Prater C. B., Weisenhorn A. L., Gould S. A., Albrecht T. R., Quate C. F., Cannell D. S., Hansma H. G., Hansma P. K. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science. 1989 Mar 24;243(4898):1586–1589. doi: 10.1126/science.2928794. [DOI] [PubMed] [Google Scholar]
  6. Evans E., Berk D., Leung A. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys J. 1991 Apr;59(4):838–848. doi: 10.1016/S0006-3495(91)82296-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ishijima A., Doi T., Sakurada K., Yanagida T. Sub-piconewton force fluctuations of actomyosin in vitro. Nature. 1991 Jul 25;352(6333):301–306. doi: 10.1038/352301a0. [DOI] [PubMed] [Google Scholar]
  8. Israelachvili J., Pashley R. The hydrophobic interaction is long range, decaying exponentially with distance. Nature. 1982 Nov 25;300(5890):341–342. doi: 10.1038/300341a0. [DOI] [PubMed] [Google Scholar]
  9. Kishino A., Yanagida T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature. 1988 Jul 7;334(6177):74–76. doi: 10.1038/334074a0. [DOI] [PubMed] [Google Scholar]
  10. Kuo S. C., Sheetz M. P. Force of single kinesin molecules measured with optical tweezers. Science. 1993 Apr 9;260(5105):232–234. doi: 10.1126/science.8469975. [DOI] [PubMed] [Google Scholar]
  11. Leckband D. E., Israelachvili J. N., Schmitt F. J., Knoll W. Long-range attraction and molecular rearrangements in receptor-ligand interactions. Science. 1992 Mar 13;255(5050):1419–1421. doi: 10.1126/science.1542789. [DOI] [PubMed] [Google Scholar]
  12. Marra J., Israelachvili J. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry. 1985 Aug 13;24(17):4608–4618. doi: 10.1021/bi00338a020. [DOI] [PubMed] [Google Scholar]
  13. Radmacher M., Tillamnn R. W., Fritz M., Gaub H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science. 1992 Sep 25;257(5078):1900–1905. doi: 10.1126/science.1411505. [DOI] [PubMed] [Google Scholar]
  14. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  15. Stahlberg A., Schuster S. C., Bauer M., Baeuerlein E., Zhao R., Reese T. S., Khan S. Conserved machinery of the bacterial flagellar motor. Biophys J. 1995 Apr;68(4 Suppl):168S–172S. [PMC free article] [PubMed] [Google Scholar]
  16. Tees D. F., Coenen O., Goldsmith H. L. Interaction forces between red cells agglutinated by antibody. IV. Time and force dependence of break-up. Biophys J. 1993 Sep;65(3):1318–1334. doi: 10.1016/S0006-3495(93)81180-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tha S. P., Goldsmith H. L. Interaction forces between red cells agglutinated by antibody. I. Theoretical. Biophys J. 1986 Dec;50(6):1109–1116. doi: 10.1016/S0006-3495(86)83555-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tha S. P., Shuster J., Goldsmith H. L. Interaction forces between red cells agglutinated by antibody. II. Measurement of hydrodynamic force of breakup. Biophys J. 1986 Dec;50(6):1117–1126. doi: 10.1016/S0006-3495(86)83556-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zasadzinski J. A., Helm C. A., Longo M. L., Weisenhorn A. L., Gould S. A., Hansma P. K. Atomic force microscopy of hydrated phosphatidylethanolamine bilayers. Biophys J. 1991 Mar;59(3):755–760. doi: 10.1016/S0006-3495(91)82288-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zilker A, Ziegler M, Sackmann E. Spectral analysis of erythrocyte flickering in the 0.3-4- microm-1 regime by microinterferometry combined with fast image processing. Phys Rev A. 1992 Dec 15;46(12):7998–8001. doi: 10.1103/physreva.46.7998. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES