Abstract
1. The utilization of some metabolic fuels has been measured in vitro in a preparation of rat jejunum to which the substrates were supplied via the perfusate flowing through the vascular bed. 2. In jejunum from 48 hr-fasted rats, the combined rates of utilization of 1 mM-acetoacetate and 2mM-D-3-hydroxybutyrate are similar to that of 7.5 mM-glucose. 3. The utilization of glucose is reduced in jejunum from animals fasted for 48 hr (45--63% reduction) and also from animals after 3--6 days of diabetes induced by streptozotocin (29% reduction). The addition of ketone bodies or of Na-oleate to the vascular perfusate does not reduce the utilization of glucose by the jejunum of either fed or 48 hr fasted rats. 4. Ketone bodies in the vascular perfusate reduce the oxidation of glucose by the jejunum of fed rats. In the jejunum of 48 hr-fasted rats, ketone bodies completely inhibit the oxidation of glucose so that all the glucose utilized by the tissue is converted to lactate. 5. The findings are discussed in relation to other work and it is concluded that substrates for the oxidative metabolism of the jejunum of fasted rats are likely to be ketone bodies, glutamine and fatty acids; at the same time the utilization of glucose is reduced and its oxidation completely abolished.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. W., Tyrrell J. B. Hexokinase activity of rat intestinal mucosa: demonstration of four isozymes and of changes in subcellular distribution with fasting and refeeding. Gastroenterology. 1973 Jul;65(1):69–76. [PubMed] [Google Scholar]
- Berger M., Hagg S. A., Goodman M. N., Ruderman N. B. Glucose metabolism in perfused skeletal muscle. Effects of starvation, diabetes, fatty acids, acetoacetate, insulin and exercise on glucose uptake and disposition. Biochem J. 1976 Aug 15;158(2):191–202. doi: 10.1042/bj1580191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bronk J. R., Parsons D. S. The polarographic determination of the respiration of the small intestine of the rat. Biochim Biophys Acta. 1965 Oct 18;107(3):397–404. doi: 10.1016/0304-4165(65)90183-2. [DOI] [PubMed] [Google Scholar]
- CRANE R. K. An effect of alloxan-diabetes on the active transport of sugars by rat small intestine, in vitro. Biochem Biophys Res Commun. 1961 Apr 28;4:436–440. doi: 10.1016/0006-291x(61)90304-7. [DOI] [PubMed] [Google Scholar]
- Csáky T. Z., Fischer E. Induction of an intestinal epithelial sugar transport system by high blood sugar. Experientia. 1977 Feb 15;33(2):223–224. doi: 10.1007/BF02124079. [DOI] [PubMed] [Google Scholar]
- Hanson P. J., Parsons D. S. Glutamine and glucose as fuels for the fed, fasted and acidotic rat small intestine [proceedings]. J Physiol. 1977 Jun;268(1):13P–14P. [PubMed] [Google Scholar]
- Hanson P. J., Parsons D. S. The utilization of glucose and production of lactate by in vitro preparations of rat small intestine: effects of vascular perfusion. J Physiol. 1976 Mar;255(3):775–795. doi: 10.1113/jphysiol.1976.sp011307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanson P. J., Parsons S. Metabolism and transport of glutamine and glucose in vascularly perfused small intestine rat. Biochem J. 1977 Sep 15;166(3):509–519. doi: 10.1042/bj1660509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawkins R. A., Alberti K. G., Houghton C. R., Williamson D. H., Krebs H. A. The effect of acetoacetate on plasma insulin concentration. Biochem J. 1971 Nov;125(2):541–544. doi: 10.1042/bj1250541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hülsmann W. C., Iemhoff W. G., van den Berg J. W., de Pijper A. M. Unequal rates of development of mitochondrial enzymes in rat small intestinal epithelium. Biochim Biophys Acta. 1970 Sep 22;215(3):553–555. doi: 10.1016/0304-4165(70)90108-x. [DOI] [PubMed] [Google Scholar]
- Hülsmann W. C. Preferential oxidation of fatty acids by rat small intestine. FEBS Lett. 1971 Sep 15;17(1):35–38. doi: 10.1016/0014-5793(71)80557-4. [DOI] [PubMed] [Google Scholar]
- Iemhoff W. G., Hülsmann W. C. Development of mitochondrial enzyme activities in rat-small-intestinal epithelium. Eur J Biochem. 1971 Dec 10;23(3):429–434. doi: 10.1111/j.1432-1033.1971.tb01637.x. [DOI] [PubMed] [Google Scholar]
- Jervis E. L., Levin R. J. Anatomic adaptation of the alimentary tract of the rat to the hyperphagia of chronic alloxan-diabetes. Nature. 1966 Apr 23;210(5034):391–393. doi: 10.1038/210391a0. [DOI] [PubMed] [Google Scholar]
- Krebs H. A., Eggleston L. V. Metabolism of acetoacetate in animal tissues. 1. Biochem J. 1945;39(5):408–419. [PMC free article] [PubMed] [Google Scholar]
- Lal D., Schedl H. P. Intestinal adaptation in diabetes: amino acid absorption. Am J Physiol. 1974 Oct;227(4):827–831. doi: 10.1152/ajplegacy.1974.227.4.827. [DOI] [PubMed] [Google Scholar]
- Lamers J. M., Hülsmann W. C. The effects of fatty acids on oxidative decarboxylation of pyruvate in rat small intestine. Biochim Biophys Acta. 1974 Mar 20;343(1):215–225. doi: 10.1016/0304-4165(74)90254-2. [DOI] [PubMed] [Google Scholar]
- Leese H. J., Mansford K. R. The effect of insulin and insulin deficiency on the transport and metabolism of glucose by rat small intestine. J Physiol. 1971 Feb;212(3):819–838. doi: 10.1113/jphysiol.1971.sp009358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maizels E. Z., Ruderman N. B., Goodman M. N., Lau D. Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat. Biochem J. 1977 Mar 15;162(3):557–568. doi: 10.1042/bj1620557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer R. J., Shakespeare P., Hübscher G. Glucose metabolism in the mucosa of the small intestine. Changes of hexokinase activity during perfusion of the proximal half of rat small intestine. Biochem J. 1970 Jan;116(1):43–48. doi: 10.1042/bj1160043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newey H., Sanford P. A., Smyth D. H. Effects of fasting on intestinal transfer of sugars and amino acids in vitro. J Physiol. 1970 Jul;208(3):705–724. doi: 10.1113/jphysiol.1970.sp009144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newsholme E. A., Sugden P. H., Williams T. Effect of citrate on the activities of 6-phosphofructokinase from nervous and muscle tissues from different animals and its relationships to the regulation of glycolysis. Biochem J. 1977 Jul 15;166(1):123–129. doi: 10.1042/bj1660123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randle P. J., Newsholme E. A., Garland P. B. Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J. 1964 Dec;93(3):652–665. doi: 10.1042/bj0930652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rolleston F. S., Newsholme E. A. Effects of fatty acids, ketone bodies, lactate and pyruvate on glucose utilization by guinea-pig cerebral cortex slices. Biochem J. 1967 Aug;104(2):519–523. doi: 10.1042/bj1040519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruderman N. B., Houghton C. R., Hems R. Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem J. 1971 Sep;124(3):639–651. doi: 10.1042/bj1240639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruderman N. B., Ross P. S., Berger M., Goodman M. N. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats. Biochem J. 1974 Jan;138(1):1–10. doi: 10.1042/bj1380001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schedl H. P., Wilson H. D. Effects of diabetes on intestinal growth and hexose transport in the rat. Am J Physiol. 1971 Jun;220(6):1739–1745. doi: 10.1152/ajplegacy.1971.220.6.1739. [DOI] [PubMed] [Google Scholar]
- Schedl H. P., Wilson H. D. Effects of diabetes on intestinal growth in the rat. J Exp Zool. 1971 Apr;176(4):487–495. doi: 10.1002/jez.1401760410. [DOI] [PubMed] [Google Scholar]
- Sherratt H. S. The metabolism of the small intestine. Oxygen uptake and L-lactate production along the length of the small intestine of the rat and guinea pig. Comp Biochem Physiol. 1968 Mar;24(3):745–761. doi: 10.1016/0010-406x(68)90787-1. [DOI] [PubMed] [Google Scholar]
- Srivastava L. M., Shakespeare P., Hübscher G. Glucose metabolism in the mucosa of the small intestine. A study of hexokinase activity. Biochem J. 1968 Aug;109(1):35–42. doi: 10.1042/bj1090035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tejwani G. A., Kaur J., Ananthanarayanan M., Ramaiah A. Concentrations of various effectors and substrates of phosphofructokinase in the jejunum of rat and their relation to the lack of Pasteur effect in this tissue. Biochim Biophys Acta. 1974 Nov 25;370(1):120–129. doi: 10.1016/0005-2744(74)90038-2. [DOI] [PubMed] [Google Scholar]
- Tejwani G. A., Ramaiah A. Properties of phosphofructokinase from the mucosa of rat jejunum and their relation to the lack of Pasteur effect. Biochem J. 1971 Nov;125(2):507–514. doi: 10.1042/bj1250507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Windmueller H. G., Spaeth A. E. Vascular perfusion of rat small intestine: metabolic studies with isolated and in situ preparations. Fed Proc. 1977 Feb;36(2):177–181. [PubMed] [Google Scholar]