Abstract
1. The intracellular Na activity of sheep heart Purkinje fibres was recorded with Na+-sensitive glass micro-electrodes. The effects of various external divalent cations on the intracellular Na activity were investigated. 2. Raising the external concentration of divalent cations (Ca, Mg, Mn, Sr or Ba) from 3 to 16 mM resulted in a decrease in the intracellular Na activity of 10-50%. 3. Raising the external concentration of Ca, Sr or Ba could produce a decrease in the intracellular Na activity even when the Na-K pump was inhibited (with strophanthidin, 10(-5) M); but raising the external concentration of Mg or Mn could not. 4. Mn inhibited the decrease in the intracellular Na activity produced by raising external Ca while the Na-K pump was inhibited. 5. Raising external Ca or adding Mn reduced the rate of rise of the intracellular Na activity on inhibition of the Na-K pump. 6. The removal of external K resulted in an increase in the intracellular Na activity. This increase could be stopped and even reversed by raising external Ca. 7. Removal of divalent cations from the external solution produced an increase in the intracellular Na activity. However, replacing external Ca and Mg by another divalent cation, e.g. Mn, did not result in a rise in the intracellular Na activity, except when the Na-K pump was inhibited. 8. The intracellular Na activity decreased by approximately 50% for a tenfold increase in the external Ca concentration. 9. The extent of the decrease in internal Na activity produced by raising external Ca was directly proportional to the internal Na activity before external Ca was raised. 10. We conclude that external Ca influences the intracellular Na activity in two ways: (a) by changing the passive Na influx: the resultant change in the intracellular Na depends on the activity of the Na-K pump; and (b) by a process where internal Na ions are exchanged for external Ca ions.
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abercrombie R. F., Sjodin R. A. Sodium efflux in Myxicola giant axons. J Gen Physiol. 1977 Jun;69(6):765–778. doi: 10.1085/jgp.69.6.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F., Meves H., Ridgway E. B. Effects of manganese and other agents on the calcium uptake that follows depolarization of squid axons. J Physiol. 1973 Jun;231(3):511–526. doi: 10.1113/jphysiol.1973.sp010246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F. Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol. 1972;24:177–223. doi: 10.1016/0079-6107(72)90007-7. [DOI] [PubMed] [Google Scholar]
- CARMELIET E. E. Chloride ions and the membrane potential of Purkinje fibres. J Physiol. 1961 Apr;156:375–388. doi: 10.1113/jphysiol.1961.sp006682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman R. A., Ellis D. The effects of manganese ions on the contraction of the frog's heart. J Physiol. 1977 Nov;272(2):331–354. doi: 10.1113/jphysiol.1977.sp012047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Arrigo J. S. Possible screening of surface charges on crayfish axons by polyvalent metal ions. J Physiol. 1973 May;231(1):117–128. doi: 10.1113/jphysiol.1973.sp010223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Francesco D., McNaughton P. A. The effects of calcium on outward membrane currents in Purkinje fibres from sheep hearts [proceedings]. J Physiol. 1977 Aug;270(1):47P–48P. [PubMed] [Google Scholar]
- Dipolo R. Sodium-dependent calcium influx in dialyzed barnacle muscle fibers. Biochim Biophys Acta. 1973 Mar 16;298(2):279–283. doi: 10.1016/0005-2736(73)90357-x. [DOI] [PubMed] [Google Scholar]
- Ellis D. The effects of external cations and ouabain on the intracellular sodium activity of sheep heart Purkinje fibres. J Physiol. 1977 Dec;273(1):211–240. doi: 10.1113/jphysiol.1977.sp012090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis D. The intracellular sodium ion concentration of sheep heart Purkinje fibres and its relationship to external sodium [proceedings]. J Physiol. 1977 Mar;266(1):74P–75P. [PubMed] [Google Scholar]
- FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glitsch H. G., Reuter H., Scholz H. The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles. J Physiol. 1970 Jul;209(1):25–43. doi: 10.1113/jphysiol.1970.sp009153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Takahashi K. Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane. J Gen Physiol. 1967 Jan;50(3):583–601. doi: 10.1085/jgp.50.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogan P. M., Spitzer K. W. Manganese amd electrogenic phenomena in canine Purkinje fibers. Circ Res. 1975 Mar;36(3):377–391. doi: 10.1161/01.res.36.3.377. [DOI] [PubMed] [Google Scholar]
- Kleinfeld M., Stein E. Action of divalent cations on membrane potentials and contractility in rat atrium. Am J Physiol. 1968 Sep;215(3):593–599. doi: 10.1152/ajplegacy.1968.215.3.593. [DOI] [PubMed] [Google Scholar]
- Langer G. A. Heart: excitation-contraction coupling. Annu Rev Physiol. 1973;35:55–86. doi: 10.1146/annurev.ph.35.030173.000415. [DOI] [PubMed] [Google Scholar]
- Langer G. A., Serena S. D., Nudd L. M. Localization of contractile-dependent Ca: comparison of Mn and verapamil in cardiac and skeletal muslce. Am J Physiol. 1975 Oct;229(4):1003–1007. doi: 10.1152/ajplegacy.1975.229.4.1003. [DOI] [PubMed] [Google Scholar]
- Mascher D. Electrical and mechanical responses in ventricular muscle fibers during barium perfusion. Pflugers Arch. 1973 Sep 16;342(4):325–346. doi: 10.1007/BF00586104. [DOI] [PubMed] [Google Scholar]
- McLaughlin S. G., Szabo G., Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol. 1971 Dec;58(6):667–687. doi: 10.1085/jgp.58.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muller R. U., Finkelstein A. The effect of surface charge on the voltage-dependent conductance induced in thin lipid membranes by monazomycin. J Gen Physiol. 1972 Sep;60(3):285–306. doi: 10.1085/jgp.60.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ochi R. The slow inward current and the action of manganese ions in guinea-pig's myocardium. Pflugers Arch. 1970;316(1):81–94. doi: 10.1007/BF00587898. [DOI] [PubMed] [Google Scholar]
- Reuter H. Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol. 1973;26:1–43. doi: 10.1016/0079-6107(73)90016-3. [DOI] [PubMed] [Google Scholar]
- Reuter H. Exchange of calcium ions in the mammalian myocardium. Mechanisms and physiological significance. Circ Res. 1974 May;34(5):599–605. doi: 10.1161/01.res.34.5.599. [DOI] [PubMed] [Google Scholar]
- Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rougier O., Vassort G., Garnier D., Gargouil Y. M., Coraboeuf E. Existence and role of a slow inward current during the frog atrial action potential. Pflugers Arch. 1969;308(2):91–110. doi: 10.1007/BF00587018. [DOI] [PubMed] [Google Scholar]
- SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. II. The action potential and excitation. Pharmacol Rev. 1958 Jun;10(2):165–273. [PubMed] [Google Scholar]
- Thomas R. C. New design for sodium-sensitive glass micro-electrode. J Physiol. 1970 Sep;210(2):82P–83P. [PubMed] [Google Scholar]
- Vereecke J., Carmeliet E. Sr action potentials in cardiac Purkyne fibres. I. Evidence for a regenerative increase in Sr conductance. Pflugers Arch. 1971;322(1):60–72. doi: 10.1007/BF00586665. [DOI] [PubMed] [Google Scholar]
- Winegrad S. Studies of cardiac muscle with a high permeability to calcium produced by treatment with ethylenediaminetetraacetic acid. J Gen Physiol. 1971 Jul;58(1):71–93. doi: 10.1085/jgp.58.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]