Abstract
1. The blocking by external Cs of inward tail currents though the K channel of the squid giant axon, as seen by the effect of Cs on the 'instantaneous' I-V curve is described. 2. Block onset is complete within 50--100 musec of a step in voltage. The block produces a negative slope region in the inward current quadrants of the I-V plots. 3. The experiments were performed in the presence of external concentrations of 240 mM-K and 0-200 mM-Cs, with the external ionic strength maintained by substituting Tris or Na for the Cs. Essentially the same results were obtained with either Tris or Na as the substitute ion. 4. The concentration of Cs required to block 50% of the K channels at zero transmembrane voltage, in intact axons, was estimated to be approximately 1 M. 5. The slope of the dose-response curve is steeper than expected for a blocking reaction with 1:1 stoichiometry when membrane voltage is in the neighbourhood of 100 mV. 6. With Cs concentrations greater than or approximately 50 mM, the voltage dependence of the block is too steep to be accounted for by the binding of a single Cs ion per channel within the membrane electric field. 7. In perfused axons, the block occurred at less negative internal voltage when internal K concentration was reduced. 8. These observations are qualitatively consistent with a multisite channel showing single file properties.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARAKI T., ITO M., KOSTYUK P. G., OSCARSSON O., OSHIMA T. Injection of alkaline cations into cat spinal motoneurones. Nature. 1962 Dec 29;196:1319–1320. doi: 10.1038/1961319a0. [DOI] [PubMed] [Google Scholar]
- ARMSTRONG C. M., BINSTOCK L. ANOMALOUS RECTIFICATION IN THE SQUID GIANT AXON INJECTED WITH TETRAETHYLAMMONIUM CHLORIDE. J Gen Physiol. 1965 May;48:859–872. doi: 10.1085/jgp.48.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adelman W. J., Jr, Palti Y. The influence of external potassium on the inactivation of sodium currents in the giant axon of the squid, Loligo pealei. J Gen Physiol. 1969 Jun;53(6):685–703. doi: 10.1085/jgp.53.6.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adelman W. J., Jr, Senft J. P. Voltage clamp studies on the effect of internal cesium ion on sodium and potassium currents in the squid giant axon. J Gen Physiol. 1966 Nov;50(2):279–293. doi: 10.1085/jgp.50.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atwood H. L., Lang F. Differential responses of crab neuromuscular synapses to cesium ion. J Gen Physiol. 1973 Jun;61(6):747–766. doi: 10.1085/jgp.61.6.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BAKER P. F., HODGKIN A. L., SHAW T. I. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol. 1962 Nov;164:355–374. doi: 10.1113/jphysiol.1962.sp007026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezanilla F., Armstrong C. M. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol. 1972 Nov;60(5):588–608. doi: 10.1085/jgp.60.5.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binstock L., Adelman W. J., Jr, Senft P., Lecar H. Determination of the resistance in series with the membranes of giant axons. J Membr Biol. 1975 Apr 23;21(1-2):25–47. doi: 10.1007/BF01941060. [DOI] [PubMed] [Google Scholar]
- Campbell D. T., Hille B. Kinetic and pharmacological properties of the sodium channel of frog skeletal muscle. J Gen Physiol. 1976 Mar;67(3):309–323. doi: 10.1085/jgp.67.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler W. K., Meves H. Voltage clamp experiments on internally perfused giant axons. J Physiol. 1965 Oct;180(4):788–820. doi: 10.1113/jphysiol.1965.sp007732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuervo L. A., Adelman W. J., Jr Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon. J Gen Physiol. 1970 Mar;55(3):309–335. doi: 10.1085/jgp.55.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Miyazaki S., Rosenthal N. P. Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J Gen Physiol. 1976 Jun;67(6):621–638. doi: 10.1085/jgp.67.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Takahashi K. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J Membr Biol. 1974;18(1):61–80. doi: 10.1007/BF01870103. [DOI] [PubMed] [Google Scholar]
- Hille B. An essential ionized acid group in sodium channels. Fed Proc. 1975 Apr;34(5):1318–1321. [PubMed] [Google Scholar]
- Hille B. Ionic selectivity of Na and K channels of nerve membranes. Membranes. 1975;3:255–323. [PubMed] [Google Scholar]
- Hille B. Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. J Gen Physiol. 1975 Nov;66(5):535–560. doi: 10.1085/jgp.66.5.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hille B. Potassium channels in myelinated nerve. Selective permeability to small cations. J Gen Physiol. 1973 Jun;61(6):669–686. doi: 10.1085/jgp.61.6.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PICKARD W. F., LETTVIN J. Y., MOORE J. W., TAKATA M., POOLER J., BERNSTEIN T. CAESUM IONS DO NOT PASS THE MEMBRANE OF THE GIANT AXON. Proc Natl Acad Sci U S A. 1964 Nov;52:1177–1183. doi: 10.1073/pnas.52.5.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sjodin R. A. Long duration responses in squid giant axons injected with 134cesium sulfate solutions. J Gen Physiol. 1966 Nov;50(2):269–278. doi: 10.1085/jgp.50.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strichartz G. R. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol. 1973 Jul;62(1):37–57. doi: 10.1085/jgp.62.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]