Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1978 Jan;274:247–263. doi: 10.1113/jphysiol.1978.sp012145

The effect of membrane cholesterol on the sodium pump in red blood cells.

M Claret, R Garay, F Giraud
PMCID: PMC1282488  PMID: 624995

Abstract

1. Human red blood cells (R.B.C.) were incubated with phosphatidylcholine vesicles to obtain partial depletion of their membrane cholesterol. The kinetic parameters of the Na pump (affinities and maximal fluxes) were determined in these cells and compared with controls. 2. In the presence of internal K, progressive cholesterol depletion induces gradually (i) an increase of the maximal flux (ii) a reduction of the apparent affinity for internal Na. 3. In the absence of internal K, cholesterol depletion has no apparent effect, indicating that the observed changes were mediated by the internal K. Cholesterol depletion acts by increasing these two K effects: (i) activation of the maximal fluxes, and (ii) reduction of the internal Na affinity. 4. The cholesterol effect (on the K-pump interaction) is specific; it occurs without any change (i) in the affinities for internal Na and inorganic phosphate and for external Na and K, and (ii) in the number of pumping sites. 5. Under physiological conditions, cholesterol reduces the cation translocation rate and increases the selectivity of the pump for internal Na.

Full text

PDF
247

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Baker P. F., Willis J. S. Binding of the cardiac glycoside ouabain to intact cells. J Physiol. 1972 Jul;224(2):441–462. doi: 10.1113/jphysiol.1972.sp009904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bjornson L. K., Gniewkowski C., Kayden H. J. Comparison of exchange of alpha-tocopherol and free cholesterol between rat plasma lipoproteins and erythrocytes. J Lipid Res. 1975 Jan;16(1):39–53. [PubMed] [Google Scholar]
  4. Bruckdorfer K. R., Demel R. A., De Gier J., van Deenen L. L. The effect of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol permeability of erythrocytes. Biochim Biophys Acta. 1969 Jul 15;183(2):334–345. doi: 10.1016/0005-2736(69)90089-3. [DOI] [PubMed] [Google Scholar]
  5. Bruckdorfer K. R., Edwards P. A., Green C. Properties of aqueous dispersions of phospholipid and cholesterol. Eur J Biochem. 1968 May;4(4):506–511. doi: 10.1111/j.1432-1033.1968.tb00241.x. [DOI] [PubMed] [Google Scholar]
  6. Chipperfield A. R., Whittam R. The connexion between the ion-binding sites of the sodium pump. J Physiol. 1976 Sep;260(2):371–385. doi: 10.1113/jphysiol.1976.sp011520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper R. A., Arner E. C., Wiley J. S., Shattil S. J. Modification of red cell membrane structure by cholesterol-rich lipid dispersions. A model for the primary spur cell defect. J Clin Invest. 1975 Jan;55(1):115–126. doi: 10.1172/JCI107901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  9. Fisher K. A. Analysis of membrane halves: cholesterol. Proc Natl Acad Sci U S A. 1976 Jan;73(1):173–177. doi: 10.1073/pnas.73.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garay R. P., Garrahan P. J. The interaction of adenosinetriphosphate and inorganic phosphate with the sodium pump in red cells. J Physiol. 1975 Jul;249(1):51–67. doi: 10.1113/jphysiol.1975.sp011002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gardner J. D., Conlon T. P. The effects of sodium and potassium on ouabain binding by human erythrocytes. J Gen Physiol. 1972 Nov;60(5):609–629. doi: 10.1085/jgp.60.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garrahan P. J., Glynn I. M. The behaviour of the sodium pump in red cells in the absence of external potassium. J Physiol. 1967 Sep;192(1):159–174. doi: 10.1113/jphysiol.1967.sp008294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garrahan P. J., Glynn I. M. The sensitivity of the sodium pump to external sodium. J Physiol. 1967 Sep;192(1):175–188. doi: 10.1113/jphysiol.1967.sp008295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garrahan P. J., Rega A. F. Cation loading of red blood cells. J Physiol. 1967 Nov;193(2):459–466. doi: 10.1113/jphysiol.1967.sp008371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Giraud F., Claret M., Garay R. Interactions of cholesterol with the Na pump in red blood cells. Nature. 1976 Dec 16;264(5587):646–648. doi: 10.1038/264646a0. [DOI] [PubMed] [Google Scholar]
  17. Glynn I. M., Lew V. L. Synthesis of adenosine triphosphate at the expense of downhill cation movements in intact human red cells. J Physiol. 1970 Apr;207(2):393–402. doi: 10.1113/jphysiol.1970.sp009068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grunze M., Deuticke B. Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes. Biochim Biophys Acta. 1974 Jul 12;356(1):125–130. doi: 10.1016/0005-2736(74)90300-9. [DOI] [PubMed] [Google Scholar]
  19. Higgins J. A., Florendo N. T., Barrnett R. J. Localization of cholesterol in membranes of erythrocyte ghosts. J Ultrastruct Res. 1973 Jan;42(1):66–81. doi: 10.1016/s0022-5320(73)80006-1. [DOI] [PubMed] [Google Scholar]
  20. Hollander d' F., Chevallier F. Movement of cholesterol in vitro in rat blood and quantitation of the exchange of free cholesterol between plasma and erythrocytes. J Lipid Res. 1972 Nov;13(6):733–744. [PubMed] [Google Scholar]
  21. Jacob H. S. Membrane lipid depletion in hyperpermeable red blood cells: its role in the genesis of spherocytes in hereditary spherocytosis. J Clin Invest. 1967 Dec;46(12):2083–2094. doi: 10.1172/JCI105695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kimelberg H. K. Alterations in phospholipid-dependent (Na+ +K+)-ATPase activity due to lipid fluidity. Effects of cholesterol and Mg2+. Biochim Biophys Acta. 1975 Nov 17;413(1):143–156. doi: 10.1016/0005-2736(75)90065-6. [DOI] [PubMed] [Google Scholar]
  23. Kroes J., Ostwald R. Erythrocyte membranes--effect of increased cholesterol content on permeability. Biochim Biophys Acta. 1971 Dec 3;249(2):647–650. doi: 10.1016/0005-2736(71)90147-7. [DOI] [PubMed] [Google Scholar]
  24. MURPHY J. R. ERYTHROCYTE METABOLISM. VI. CELL SHAPE AND THE LOCATION OF CHOLESTEROL IN THE ERYTHROCYTE MEMBRANE. J Lab Clin Med. 1965 May;65:756–774. [PubMed] [Google Scholar]
  25. Moore M. R. Fusion of liposomes containing conductance probes with black lipid films. Biochim Biophys Acta. 1976 Apr 5;426(4):765–771. doi: 10.1016/0005-2736(76)90144-9. [DOI] [PubMed] [Google Scholar]
  26. Oldfield E., Chapman D. Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol. FEBS Lett. 1972 Jul 1;23(3):285–297. doi: 10.1016/0014-5793(72)80300-4. [DOI] [PubMed] [Google Scholar]
  27. Papahadjopoulos D., Cowden M., Kimelberg H. Role of cholesterol in membranes. Effects on phospholipid-protein interactions, membrane permeability and enzymatic activity. Biochim Biophys Acta. 1973 Nov 30;330(1):8–26. doi: 10.1016/0005-2736(73)90280-0. [DOI] [PubMed] [Google Scholar]
  28. Papahadjopoulos D., Poste G., Schaeffer B. E., Vail W. J. Membrane fusion and molecular segregation in phospholipid vesicles. Biochim Biophys Acta. 1974 May 30;352(1):10–28. doi: 10.1016/0005-2736(74)90175-8. [DOI] [PubMed] [Google Scholar]
  29. Poznansky M., Kirkwood D., Solomon A. K. Modulation of red cell K+ transport by membrane lipids. Biochim Biophys Acta. 1973 Dec 22;330(3):351–355. doi: 10.1016/0005-2736(73)90245-9. [DOI] [PubMed] [Google Scholar]
  30. Quarfordt S. H., Hilderman H. L. Quantitation of the in vitro free cholesterol exchange of human red cells and lipoproteins. J Lipid Res. 1970 Nov;11(6):528–535. [PubMed] [Google Scholar]
  31. ROSE H. G., OKLANDER M. IMPROVED PROCEDURE FOR THE EXTRACTION OF LIPIDS FROM HUMAN ERYTHROCYTES. J Lipid Res. 1965 Jul;6:428–431. [PubMed] [Google Scholar]
  32. Rothman J. E., Dawidowicz E. A. Asymmetric exchange of vesicle phospholipids catalyzed by the phosphatidylcholine exhange protein. Measurement of inside--outside transitions. Biochemistry. 1975 Jul;14(13):2809–2816. doi: 10.1021/bi00684a004. [DOI] [PubMed] [Google Scholar]
  33. SINGLETON W. S., GRAY M. S., BROWN M. L., WHITE J. L. CHROMATOGRAPHICALLY HOMOGENEOUS LECITHIN FROM EGG PHOSPHOLIPIDS. J Am Oil Chem Soc. 1965 Jan;42:53–56. doi: 10.1007/BF02558256. [DOI] [PubMed] [Google Scholar]
  34. WEIL-MALHERBE H., GREEN R. H. The catalytic effect of molybdate on the hydrolysis of organic phosphate bonds. Biochem J. 1951 Aug;49(3):286–292. [PMC free article] [PubMed] [Google Scholar]
  35. Wiley J. S., Cooper R. A. Inhibition of cation cotransport by cholesterol enrichment of human red cell membranes. Biochim Biophys Acta. 1975 Dec 16;413(3):425–431. doi: 10.1016/0005-2736(75)90125-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES