Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1978 Feb;275:135–148. doi: 10.1113/jphysiol.1978.sp012181

Field potentials, inhibition and the effect of pentobarbitone in the rat olfactory cortex slice.

H G Pickles, M A Simmonds
PMCID: PMC1282536  PMID: 633099

Abstract

1. Field potentials were evoked in slices of rat olfactory cortex by stimulating the lateral olfactory tract. In addition to previously described components of the wave-form, a further distinct surface-negative potential of low amplitude and long duration (I-wave) has been described. 2. Pentobarbitone, at concentrations of 10(-5) M and above, markedly enhanced enhanced the amplitude and duration of the I-wave with only minimal effect on other components of the field potential. 3. The I-wave was reversibly reduced by the GABA antagonists bicuculline and picrotoxin and was also attenuated at rapid rates of stimulation. Low chloride medium usually caused a transient increase in amplitude of the I-wave followed by a gradual reduction, suggesting that a chloride-mediated depolarization was involved. 4. Evoked inhibition, which was most probably post-synaptic, occurred in parallel with the I-wave. This was monitored as a suppression of, or increase in latency of the population spike evoked by a second stimulus at appropriate intervals after the first. Pentobarbitone substantially increased the duration of the post-synpatic inhibition, without obvious changes in the presynaptic inhibitory phenomenon associated with antidromic firing in the lateral olfactory tract. 5. It is proposed that the I-wave is the field potential representation of a population depolarizing i.p.s.p. and that the main action of pentobarbitone is to enhance this inhibition.

Full text

PDF
135

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R., Brown D. A. Actions of gamma-aminobutyric acid on sympathetic ganglion cells. J Physiol. 1975 Aug;250(1):85–120. doi: 10.1113/jphysiol.1975.sp011044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banna N. R., Jabbur S. J. Pharmacological studies on inhibition in the cuneate nucleus of the cat. Int J Neuropharmacol. 1969 May;8(3):299–307. doi: 10.1016/0028-3908(69)90051-3. [DOI] [PubMed] [Google Scholar]
  3. Biedenbach M. A., Stevens C. F. Electrical activity in cat olfactory cortex produced by synchronous orthodromic volleys. J Neurophysiol. 1969 Mar;32(2):193–203. doi: 10.1152/jn.1969.32.2.193. [DOI] [PubMed] [Google Scholar]
  4. Biedenbach M. A., Stevens C. F. Synaptic organization of cat olfactory cortex as revealed by intracellular recording. J Neurophysiol. 1969 Mar;32(2):204–214. doi: 10.1152/jn.1969.32.2.204. [DOI] [PubMed] [Google Scholar]
  5. Deschenes M., Feltz P., Lamour Y. A model for an estimate in vivo of the ionic basis of presynaptic inhibition: an intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia. Brain Res. 1976 Dec 24;118(3):486–493. doi: 10.1016/0006-8993(76)90318-8. [DOI] [PubMed] [Google Scholar]
  6. ECCLES J. C., SCHMIDT R., WILLIS W. D. PHARMACOLOGICAL STUDIES ON PRESYNAPTIC INHIBITION. J Physiol. 1963 Oct;168:500–530. doi: 10.1113/jphysiol.1963.sp007205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Galindo A. Effects of procaine, pentobarbital and halothane on synaptic transmission in the central nervous system. J Pharmacol Exp Ther. 1969 Oct;169(2):185–195. [PubMed] [Google Scholar]
  8. Haberly L. B. Summed potentials evoked in opossum prepyriform cortex. J Neurophysiol. 1973 Jul;36(4):775–788. doi: 10.1152/jn.1973.36.4.775. [DOI] [PubMed] [Google Scholar]
  9. Haberly L. B. Unitary analysis of opossum prepyriform cortex. J Neurophysiol. 1973 Jul;36(4):762–774. doi: 10.1152/jn.1973.36.4.762. [DOI] [PubMed] [Google Scholar]
  10. Harvey J. A., Scholfield C. N., Brown D. A. Evoked surface-positive potentials in isolated mammalian olfactory cortex. Brain Res. 1974 Aug 16;76(2):235–245. doi: 10.1016/0006-8993(74)90457-0. [DOI] [PubMed] [Google Scholar]
  11. Legge K. F., Randic M., Straughan D. W. The pharmacology of neurones in the pyriform cortex. Br J Pharmacol Chemother. 1966 Jan;26(1):87–107. doi: 10.1111/j.1476-5381.1966.tb01814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nicoll R. A., Eccles J. C., Oshima T., Rubia F. Prolongation of hippocampal inhibitory postsynaptic potentials by barbiturates. Nature. 1975 Dec 18;258(5536):625–627. doi: 10.1038/258625a0. [DOI] [PubMed] [Google Scholar]
  13. Nicoll R. A. The effects of anaesthetics on synaptic excitation and inhibition in the olfactory bulb. J Physiol. 1972 Jun;223(3):803–814. doi: 10.1113/jphysiol.1972.sp009875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pickles H. G., Simmonds M. A. Possible presynaptic inhibition in rat olfactory cortex. J Physiol. 1976 Sep;260(2):475–486. doi: 10.1113/jphysiol.1976.sp011526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richards C. D. On the mechanism of barbiturate anaesthesia. J Physiol. 1972 Dec;227(3):749–767. doi: 10.1113/jphysiol.1972.sp010057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Richards C. D. Potentiation and depression of synaptic transmission in the olfactory cortex of the guinea-pig. J Physiol. 1972 Apr;222(1):209–231. doi: 10.1113/jphysiol.1972.sp009794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Richards C. D., Sercombe R. Electrical activity observed in guinea-pig olfactory cortex maintained in vitro. J Physiol. 1968 Aug;197(3):667–683. doi: 10.1113/jphysiol.1968.sp008581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Richards C. D., Smaje J. C. Anaesthetics depress the sensitivity of cortical neurones to L-glutamate. Br J Pharmacol. 1976 Nov;58(3):347–357. [PMC free article] [PubMed] [Google Scholar]
  19. Scholfield C. N. A barbiturate induced intensification of the inhibitory potential in slices of guinea-pig olfactory cortex. J Physiol. 1978 Feb;275:559–566. doi: 10.1113/jphysiol.1978.sp012208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Scholfield C. N. A depolarizing inhibitory potential in neurones of the olfactory cortex in vitro. J Physiol. 1978 Feb;275:547–557. doi: 10.1113/jphysiol.1978.sp012207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Scholfield C. N. Prolongation of post-synaptic inhibition by barbiturates [proceedings]. Br J Pharmacol. 1977 Mar;59(3):507P–507P. [PMC free article] [PubMed] [Google Scholar]
  22. Weakly J. N. Effect of barbiturates on 'quantal' synaptic transmission in spinal motoneurones. J Physiol. 1969 Sep;204(1):63–77. doi: 10.1113/jphysiol.1969.sp008898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamamoto C., McIlwain H. Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro. J Neurochem. 1966 Dec;13(12):1333–1343. doi: 10.1111/j.1471-4159.1966.tb04296.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES