Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1978 Feb;275:467–480. doi: 10.1113/jphysiol.1978.sp012201

Effects of phlorizin on glucose, water and sodium handling by the rat kidney.

J H Bishop, R Elegbe, R Green, S Thomas
PMCID: PMC1282556  PMID: 633141

Abstract

1. The effect of phlorizin on glucose, water and sodium handling by the kidney in anaesthetized rats was investigated, using clearance techniques, during infusion of saline (200 microliter min-1) or saline to which either low (0.1 mumole kg body weight-1 ml.-1) doses of phlorizin had been added. 2. Phlorizin increased the absolute and fractional excretion of glucose, urine osmolality and negative free water clearance; and reduced urine flow rate, glomerular filtration rate (GFR), absolute and fractional excretion of sodium, absolute excretion of sodium, absolute excretion of potassium and absolute and fractional rates of glucose reabsorption. 3. The data indicate that phlorizin has sites of action and effects additional to those on glucose transport in the proximal tubule. 4. Within each series there was a positive correlation between sodium and glucose reabsorption; but the rate of glucose reabsorption was different between each series even though the sodium reabsorption was not. 5. It is suggested that since both sodium and glucose reabsorption correlate with GFR, they may be related via GFR. 6. The data indicate that for the whole kidney any effect of glucose on sodium transport is small relative to total renal handling of sodium.

Full text

PDF
467

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALVARADO F., CRANE R. K. STUDIES ON THE MECHANISM OF INTESTINAL ABSORPTION OF SUGARS. VII. PHENYLGLYCOSIDE TRANSPORT AND ITS POSSIBLE RELATIONSHIP TO PHLORIZIN INHIBITION OF THE ACTIVE TRANSPORT OF SUGARS BY THE SMALL INTESTINE. Biochim Biophys Acta. 1964 Oct 9;93:116–135. doi: 10.1016/0304-4165(64)90266-1. [DOI] [PubMed] [Google Scholar]
  2. Bishop J. H., Green R., Thomas S. Effects of glucose on water and sodium reabsorption in the proximal convoluted tubule of rat kidney. J Physiol. 1978 Feb;275:481–493. doi: 10.1113/jphysiol.1978.sp012202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bishop J. H., Green R., Thomas S. Proceedings: Glucose reabsorption in short loops of Henle in the rat. J Physiol. 1976 May;257(1):55P–56P. [PubMed] [Google Scholar]
  4. Bishop J. H., Green R., Thomas S. Proceedings: The effect of glucose on fluid readsorption in rat renal proximal convoluted tubules. J Physiol. 1975 Jul;249(1):44P–45P. [PubMed] [Google Scholar]
  5. Brochner-Mortensen J. The glomerular filtration rate during moderate hyperglycemia in normal man. Acta Med Scand. 1973 Jul-Aug;1-2(1):31–37. doi: 10.1111/j.0954-6820.1973.tb19410.x. [DOI] [PubMed] [Google Scholar]
  6. Burg M., Patlak C., Green N., Villey D. Organic solutes in fluid absorption by renal proximal convoluted tubules. Am J Physiol. 1976 Aug;231(2):627–637. doi: 10.1152/ajplegacy.1976.231.2.627. [DOI] [PubMed] [Google Scholar]
  7. CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
  8. Cardinal J., Lutz M. D., Burg M. B., Orloff J. Lack of relationship of potential difference to fluid absorption in the proximal renal tubule. Kidney Int. 1975 Feb;7(2):94–102. doi: 10.1038/ki.1975.14. [DOI] [PubMed] [Google Scholar]
  9. Frasch W., Frohnert P. P., Bode F., Baumann K., Kinne R. Competitive inhibition of phlorizin binding by D-glucose and the influence of sodium: a study on isolated brush border membrane of rat kidney. Pflugers Arch. 1970;320(3):265–284. doi: 10.1007/BF00587458. [DOI] [PubMed] [Google Scholar]
  10. Frohnert P. P., Höhmann B., Zwiebel R., Baumann K. Free flow micropuncture studies of glucose transport in the rat nephron. Pflugers Arch. 1970;315(1):66–85. doi: 10.1007/BF00587238. [DOI] [PubMed] [Google Scholar]
  11. Frömter E., Gessner K. Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pflugers Arch. 1974;351(1):85–98. doi: 10.1007/BF00603513. [DOI] [PubMed] [Google Scholar]
  12. Green R., Giebisch G. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride. Am J Physiol. 1975 Nov;229(5):1205–1215. doi: 10.1152/ajplegacy.1975.229.5.1205. [DOI] [PubMed] [Google Scholar]
  13. Huang K. C., Woosley R. L. Renal tubular secretion of L-glucose. Am J Physiol. 1968 Feb;214(2):342–347. doi: 10.1152/ajplegacy.1968.214.2.342. [DOI] [PubMed] [Google Scholar]
  14. Jacobson H. R., Kokko J. P. Intrinsic differences in various segments of the proximal convoluted tubule. J Clin Invest. 1976 Apr;57(4):818–825. doi: 10.1172/JCI108357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Keyes J. L., Swanson R. E. Dependence of glucose Tm on GFR and tubular volume in the dog kidney. Am J Physiol. 1971 Jul;221(1):1–7. doi: 10.1152/ajplegacy.1971.221.1.1. [DOI] [PubMed] [Google Scholar]
  16. Kinne R. K. Polarity of the renal proximal tubular cell: function and enzyme pattern of the isolated plasma membranes. Med Clin North Am. 1975 May;59(3):615–627. doi: 10.1016/s0025-7125(16)32013-2. [DOI] [PubMed] [Google Scholar]
  17. Kokko J. P. Proximal tubule potential difference. Dependence on glucose on glucose, HCO 3 , and amino acids. J Clin Invest. 1973 Jun;52(6):1362–1367. doi: 10.1172/JCI107308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kurtzman N. A., Pillay V. K. Renal reabsorption of glucose in health and disease. Arch Intern Med. 1973 Jun;131(6):901–904. [PubMed] [Google Scholar]
  19. Kurtzman N. A., White M. G., Rogers P. W., Flynn J. J., 3rd Relationship of sodium reabsorption and glomerular filtration rate to renal glucose reabsorption. J Clin Invest. 1972 Jan;51(1):127–133. doi: 10.1172/JCI106782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kwong T. F., Bennett C. M. Relationship between glomerular filtration rate and maximum tubular reabsorptive rate of glucose. Kidney Int. 1974 Jan;5(1):23–29. doi: 10.1038/ki.1974.3. [DOI] [PubMed] [Google Scholar]
  21. LOTSPEICH W. D. Phlorizin and the cellular transport of glucose. Harvey Lect. 1960;56:63–91. [PubMed] [Google Scholar]
  22. LOTSPEICH W. D., WORONKOW S. Some quantitative studies on phlorizin inhibition of glucose transport in the kidney. Am J Physiol. 1958 Nov;195(2):331–336. doi: 10.1152/ajplegacy.1958.195.2.331. [DOI] [PubMed] [Google Scholar]
  23. Lennon E. J., Lemann J., Jr, Piering W. F., Larson L. S. The effect of glucose on urinary cation excretion during chronic extracellular volume expansion in normal man. J Clin Invest. 1974 May;53(5):1424–1433. doi: 10.1172/JCI107690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morel F., de Rouffignac C. Kidney. Annu Rev Physiol. 1973;35:17–54. doi: 10.1146/annurev.ph.35.030173.000313. [DOI] [PubMed] [Google Scholar]
  25. Rohde R., Deetjen P. Die Glucoseresorption in der Rattenniere. Mikropunktionsanalysen der tubulären Glucosekonzentration bei freiem Fluss. Pflugers Arch. 1968;302(3):219–232. doi: 10.1007/BF00586727. [DOI] [PubMed] [Google Scholar]
  26. Schultze R. G., Berger H. The influence of GFR and saline expansion on TmG of the dog kidney. Kidney Int. 1973 May;3(5):291–297. doi: 10.1038/ki.1973.47. [DOI] [PubMed] [Google Scholar]
  27. Silverman M. Glucose transport in the kidney. Biochim Biophys Acta. 1976 Dec 14;457(3-4):303–351. doi: 10.1016/0304-4157(76)90003-4. [DOI] [PubMed] [Google Scholar]
  28. Trimble M. E., Bowman R. H. Renal Na+ and K+ transport: effects of glucose, palmitate, and alpha-bromopalmitate. Am J Physiol. 1973 Nov;225(5):1057–1062. doi: 10.1152/ajplegacy.1973.225.5.1057. [DOI] [PubMed] [Google Scholar]
  29. Ullrich K. J. Renal tubular mechanisms of organic solute transport. Kidney Int. 1976 Feb;9(2):134–148. doi: 10.1038/ki.1976.17. [DOI] [PubMed] [Google Scholar]
  30. Ullrich K. J., Rumrich G., Klöss S. Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pflugers Arch. 1974;351(1):35–48. doi: 10.1007/BF00603509. [DOI] [PubMed] [Google Scholar]
  31. Vogel G., Kröger W. Die Bedeutung des Transportes, der Konzentration und der Darbietungsrichtung von Na+ für den tubulären Glucose- und PAH-Transport. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;288(4):342–358. [PubMed] [Google Scholar]
  32. Vogel G., Tervooren U., Stoeckert I. Untersuchungen zur Abhängigkeit des renal tubulären Glucose-Transportes vom Ionen-Angebot sowie des Na+-Transportes vom Angebot an Glucose. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;288(4):359–368. [PubMed] [Google Scholar]
  33. Von Baeyer H. Glucose transport in the short loop of Henle of the rat kidney. Its characterisation by transport constants. Pflugers Arch. 1975 Sep 29;359(4):317–323. doi: 10.1007/BF00581442. [DOI] [PubMed] [Google Scholar]
  34. Weinman E. J., Suki W. N., Eknoyan G. D-Glucose enhancement of water reabsorption in proximal tubule of the rat kidney. Am J Physiol. 1976 Sep;231(3):777–780. doi: 10.1152/ajplegacy.1976.231.3.777. [DOI] [PubMed] [Google Scholar]
  35. van Liew J. B., Deetjen P., Boylan J. W. Glucose reabsorption in the rat kidney. Dependence on glomerular filtration. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;295(3):232–244. doi: 10.1007/BF01844103. [DOI] [PubMed] [Google Scholar]
  36. von Baeyer H., von Conta C., Haeberle D., Deetjen P. Determination of transport constants for glucose in proximal tubules of the rat kidney. Pflugers Arch. 1973 Nov 8;343(4):273–286. doi: 10.1007/BF00595815. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES