Abstract
1. The effects of glucose on sodium and water reabsorption by rat renal proximal tubules was investigated by in situ microperfusion of segments of proximal tubules with solutions containing glucose or no glucose, with and without phlorizin. 2. Absence of glucose did not significantly alter net water flux. Sodium flux was reduced by about 10% but this was not statistically significant. 3. In the absence of glucose in the perfusion fluid net secretion of glucose occurred. 4. Phlorizin reduced either net reabsorption or net secretion of glucose; and net water flux. 5. The data suggest that in later parts of the proximal convoluted tubule some sodium may be co-transported with glucose, but that this represents only a small fraction of the total sodium reabsorption. 6. It is suggested that the glucose carrier is reversible and in appropriate circumstances could cause glucose secretion. 7. Although phlorizin alters net water flux the underlying mechanisms are not clear. 8. The calculated osmolality of the reabsorbate was significantly greater than the perfusate osmolality and greater than plasma osmolality although this was not quite significant statistically.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bank N., Aynedjian H. S. Techniques of microperfusion of renal tubules and capillaries. Yale J Biol Med. 1972 Jun-Aug;45(3-4):312–317. [PMC free article] [PubMed] [Google Scholar]
- Baumann K., Huang K. C. Micropuncture and microperfusion study of L-glucose secretion in rat kidney. Pflugers Arch. 1969;305(2):155–166. doi: 10.1007/BF00585842. [DOI] [PubMed] [Google Scholar]
- Bishop J. H., Elegbe R., Green R., Thomas S. Effects of phlorizin on glucose, water and sodium handling by the rat kidney. J Physiol. 1978 Feb;275:467–480. doi: 10.1113/jphysiol.1978.sp012201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burg M., Patlak C., Green N., Villey D. Organic solutes in fluid absorption by renal proximal convoluted tubules. Am J Physiol. 1976 Aug;231(2):627–637. doi: 10.1152/ajplegacy.1976.231.2.627. [DOI] [PubMed] [Google Scholar]
- CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
- Cardinal J., Lutz M. D., Burg M. B., Orloff J. Lack of relationship of potential difference to fluid absorption in the proximal renal tubule. Kidney Int. 1975 Feb;7(2):94–102. doi: 10.1038/ki.1975.14. [DOI] [PubMed] [Google Scholar]
- Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frohnert P. P., Höhmann B., Zwiebel R., Baumann K. Free flow micropuncture studies of glucose transport in the rat nephron. Pflugers Arch. 1970;315(1):66–85. doi: 10.1007/BF00587238. [DOI] [PubMed] [Google Scholar]
- Frömter E., Gessner K. Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pflugers Arch. 1974;351(1):85–98. doi: 10.1007/BF00603513. [DOI] [PubMed] [Google Scholar]
- GERLACH E., DEUTICKE B., DUHM J. PHOSPHAT-PERMEABILITAET UND PHOSPHAT-STOFFWECHSEL MENSCHLICHER ERYTHROCYTEN UND MOEGLICHKEITEN IHRER EXPERIMENTELLEN BEEINFLUSSUNG. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Jul 30;280:243–274. [PubMed] [Google Scholar]
- Green R., Giebisch G. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride. Am J Physiol. 1975 Nov;229(5):1205–1215. doi: 10.1152/ajplegacy.1975.229.5.1205. [DOI] [PubMed] [Google Scholar]
- Hare D., Stolte H. Rat proximal tubule D-glucose transport as a function of concentration, flow, and radius. Pflugers Arch. 1972;334(3):207–221. doi: 10.1007/BF00626224. [DOI] [PubMed] [Google Scholar]
- Huang K. C., Woosley R. L. Renal tubular secretion of L-glucose. Am J Physiol. 1968 Feb;214(2):342–347. doi: 10.1152/ajplegacy.1968.214.2.342. [DOI] [PubMed] [Google Scholar]
- Jacobson H. R., Kokko J. P. Intrinsic differences in various segments of the proximal convoluted tubule. J Clin Invest. 1976 Apr;57(4):818–825. doi: 10.1172/JCI108357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kokko J. P. Proximal tubule potential difference. Dependence on glucose on glucose, HCO 3 , and amino acids. J Clin Invest. 1973 Jun;52(6):1362–1367. doi: 10.1172/JCI107308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOTSPEICH W. D. Phlorizin and the cellular transport of glucose. Harvey Lect. 1960;56:63–91. [PubMed] [Google Scholar]
- Lingard J., Rumrich G., Young J. A. Reabsorption of L-glutamine and L-histidine from various regions of the rat proximal convolution studied by stationary microperfusion: evidence that the proximal convolution is not homogeneous. Pflugers Arch. 1973 Jul 25;342(1):1–12. doi: 10.1007/BF00593246. [DOI] [PubMed] [Google Scholar]
- Loeschke K., Baumann K., Renschler H., Ullrich K. J. Differenzierung zwischen aktiver und passiver Komponente des D-Glucosetrnsports am proximalen Konvolut der Rattenniere. Pflugers Arch. 1969;305(2):118–138. doi: 10.1007/BF00585840. [DOI] [PubMed] [Google Scholar]
- Morel F., de Rouffignac C. Kidney. Annu Rev Physiol. 1973;35:17–54. doi: 10.1146/annurev.ph.35.030173.000313. [DOI] [PubMed] [Google Scholar]
- Neumann K. H., Rector F. C., Jr Mechanism of NaCl and water reabsorption in the proximal convoluted tubule of rat kidney. J Clin Invest. 1976 Nov;58(5):1110–1118. doi: 10.1172/JCI108563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohde R., Deetjen P. Die Glucoseresorption in der Rattenniere. Mikropunktionsanalysen der tubulären Glucosekonzentration bei freiem Fluss. Pflugers Arch. 1968;302(3):219–232. doi: 10.1007/BF00586727. [DOI] [PubMed] [Google Scholar]
- SONNENBERG H., DEETJEN P. METHODE ZUR DURCHSTROEMUNG EINZELNER NEPHRONABSCHNITTE. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Jan 30;278:669–674. [PubMed] [Google Scholar]
- Sackin H., Boulpaep E. L. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney. J Gen Physiol. 1975 Dec;66(6):671–733. doi: 10.1085/jgp.66.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnell K. F. On the mechanism of inhibition of the sulfate transfer across the human erythrocyte membrane. Biochim Biophys Acta. 1972 Sep 1;282(1):265–276. doi: 10.1016/0005-2736(72)90333-1. [DOI] [PubMed] [Google Scholar]
- Seely J. F. Variation in electrical resistance along length of rat proximal convoluted tubule. Am J Physiol. 1973 Jul;225(1):48–57. doi: 10.1152/ajplegacy.1973.225.1.48. [DOI] [PubMed] [Google Scholar]
- Silverman M. Glucose transport in the kidney. Biochim Biophys Acta. 1976 Dec 14;457(3-4):303–351. doi: 10.1016/0304-4157(76)90003-4. [DOI] [PubMed] [Google Scholar]
- Stolte H., Hare D., Boylan J. W. D-glucose and fluid reabsorption in proximal surface tubule of the rat kidney. Pflugers Arch. 1972;334(3):193–206. doi: 10.1007/BF00626223. [DOI] [PubMed] [Google Scholar]
- Suki W. N., Herbert C. S., Stinebaugh B. J., Martinez-Maldonado M., Eknoyan G. Effects of glucose on bicarbonate reabsorption in the dog kidney. J Clin Invest. 1974 Jul;54(1):1–8. doi: 10.1172/JCI107730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tune B. M., Burg M. B. Glucose transport by proximal renal tubules. Am J Physiol. 1971 Aug;221(2):580–585. doi: 10.1152/ajplegacy.1971.221.2.580. [DOI] [PubMed] [Google Scholar]
- Ullrich K. J., Rumrich G., Klöss S. Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pflugers Arch. 1974;351(1):35–48. doi: 10.1007/BF00603509. [DOI] [PubMed] [Google Scholar]
- Weinman E. J., Suki W. N., Eknoyan G. D-Glucose enhancement of water reabsorption in proximal tubule of the rat kidney. Am J Physiol. 1976 Sep;231(3):777–780. doi: 10.1152/ajplegacy.1976.231.3.777. [DOI] [PubMed] [Google Scholar]
- Wen S. F. Micropuncture studies of glucose transport in the dog: mechanism of renal glycosuria. Am J Physiol. 1976 Aug;231(2):468–475. doi: 10.1152/ajplegacy.1976.231.2.468. [DOI] [PubMed] [Google Scholar]
- van Liew J. B., Deetjen P., Boylan J. W. Glucose reabsorption in the rat kidney. Dependence on glomerular filtration. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;295(3):232–244. doi: 10.1007/BF01844103. [DOI] [PubMed] [Google Scholar]
- von Baeyer H., von Conta C., Haeberle D., Deetjen P. Determination of transport constants for glucose in proximal tubules of the rat kidney. Pflugers Arch. 1973 Nov 8;343(4):273–286. doi: 10.1007/BF00595815. [DOI] [PubMed] [Google Scholar]
