Abstract
1. The influx of nineteen amino acids into the heart of the living rat was studied by a method specially devised for experiments under controlled conditions in vivo. 2. When, in separate experiments, the concentration of each amino acid in turn was artificially raised in the circulation, the influx of that amino acid into the heart increased. 3. Our data indicate that at least ten of these amino acids enter the heart in vivo by means of saturable carrier-mediated transport systems. The transport rates conform, at least approximately, to Michaelis kinetics and the transport systems are clearly, in the cases of many amino acids, active, i.e. energy-dependent. 4. The amino acids which were studied had rates of influx into the heart which differed from each other over a range of more than 10 to 1, even when allowances were made for the difference in their concentration in the circulating blood. These differences in influx were not related to such factors as the molecular size of the individual amino acids. 5. The amino acids which have a high influx into the heart are mainly those which are needed either to re-synthesize contractile protein or as oxidizable substrates.
Full text
PDF![471](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/775eb3bb8a4c/jphysiol00766-0477.png)
![472](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/77c20cca5e73/jphysiol00766-0478.png)
![473](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/b434ef5ebd27/jphysiol00766-0479.png)
![474](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/031d0ce9bebf/jphysiol00766-0480.png)
![475](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/d5e03649e163/jphysiol00766-0481.png)
![476](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/5ae196c61f90/jphysiol00766-0482.png)
![477](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/7d1ca1ecfead/jphysiol00766-0483.png)
![478](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/7a3f2809b934/jphysiol00766-0484.png)
![479](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/f486a2737da1/jphysiol00766-0485.png)
![480](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/d028b60f73c8/jphysiol00766-0486.png)
![481](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/cf167dafdac7/jphysiol00766-0487.png)
![482](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/d02fb9fcdf07/jphysiol00766-0488.png)
![483](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/16e7da2ecafc/jphysiol00766-0489.png)
![484](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/210b730b8009/jphysiol00766-0490.png)
![485](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/39a4ccfce3c6/jphysiol00766-0491.png)
![486](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ab/1282670/cd98ac5d4fc5/jphysiol00766-0492.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkin G. E., Ferdinand W. Accelerated amino acid analysis: studies on the use of lithium citrate buffers and the effect of n-propanol, in the analysis of physiological fluids and protein hydrolyzates. Anal Biochem. 1970 Dec;38(2):313–329. doi: 10.1016/0003-2697(70)90456-2. [DOI] [PubMed] [Google Scholar]
- Bachelard H. S., Daniel P. M., Love E. R., Pratt O. E. The transport of glucose into the brain of the rat in vivo. Proc R Soc Lond B Biol Sci. 1973 Feb 27;183(1070):71–82. doi: 10.1098/rspb.1973.0005. [DOI] [PubMed] [Google Scholar]
- Baños G., Daniel P. M., Love E. R., Moorhouse S. R., Pratt O. E. The entry of amino acids into the myocardium of the growing rat in vivo. J Physiol. 1971 Jul;216(2):64P–65P. [PubMed] [Google Scholar]
- Baños G., Daniel P. M., Moorhouse S. R., Pratt O. E. Inhibition of entry of some amino acids into the brain, with observations on mental retardation in the aminoacidurias. Psychol Med. 1974 Aug;4(3):262–269. doi: 10.1017/s003329170004294x. [DOI] [PubMed] [Google Scholar]
- Baños G., Daniel P. M., Moorhouse S. R., Pratt O. E. The influx of amino acids into the brain of the rat in vivo: the essential compared with some non-essential amino acids. Proc R Soc Lond B Biol Sci. 1973 Feb 27;183(1070):59–70. doi: 10.1098/rspb.1973.0004. [DOI] [PubMed] [Google Scholar]
- Baños G., Daniel P. M., Moorhouse S. R., Pratt O. E. The movement of amino acids between blood and skeletal muscle in the rat. J Physiol. 1973 Dec;235(2):459–475. doi: 10.1113/jphysiol.1973.sp010397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baños G., Daniel P. M., Moorhouse S. R., Pratt O. E. The requirements of the brain for some amino acids. J Physiol. 1975 Apr;246(3):539–548. doi: 10.1113/jphysiol.1975.sp010903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniel P. M., Donaldson J., Pratt O. E. A method for injecting substances into the circulation to reach rapidly and to maintain a steady level. With examples of its application in the study of carbohydrate and amino acid metabolism. Med Biol Eng. 1975 Mar;13(2):214–227. doi: 10.1007/BF02477731. [DOI] [PubMed] [Google Scholar]
- Daniel P. M., Love E. R., Moorhouse S. R., Pratt O. E., Wilson P. A method for rapidly washing the blood out of an organ or tissue of the anaesthetized living animal. J Physiol. 1974 Mar;237(2):11P–12P. [PubMed] [Google Scholar]
- Daniel P. M., Love E. R., Pratt O. E. Insulin and the way the brain handles glucose. J Neurochem. 1975 Oct;25(4):471–476. doi: 10.1111/j.1471-4159.1975.tb04352.x. [DOI] [PubMed] [Google Scholar]
- Daniel P. M., Love E. R., Pratt O. E. The influence of insulin upon the metabolism of glucose by the brain. Proc R Soc Lond B Biol Sci. 1977 Feb 11;196(1122):85–104. doi: 10.1098/rspb.1977.0031. [DOI] [PubMed] [Google Scholar]
- Daniel P. M., Moorhouse S. R., Pratt O. E. Amino acid precursors of monoamine neurotransmitters and some factors influencing their supply to the brain. Psychol Med. 1976 May;6(2):277–286. doi: 10.1017/s0033291700013830. [DOI] [PubMed] [Google Scholar]
- Donaldson J., Pratt O. E. Proceedings: A method for displaying the effect of altering the constants of a function and an application to the problem of maintaining steady blood concentrations. J Physiol. 1975 Nov;252(2):5P–6P. [PubMed] [Google Scholar]
- Krebs H. A. The role of chemical equilibria in organ function. Adv Enzyme Regul. 1975;13:449–472. doi: 10.1016/0065-2571(75)90030-8. [DOI] [PubMed] [Google Scholar]
- Morgan H. E., Earl D. C., Broadus A., Wolpert E. B., Giger K. E., Jefferson L. S. Regulation of protein synthesis in heart muscle. I. Effect of amino acid levels on protein synthesis. J Biol Chem. 1971 Apr 10;246(7):2152–2162. [PubMed] [Google Scholar]
- Peterson M. B., Lesch M. Protein synthesis and amino acid transport in the isolated rabbit right ventricular papillary muscle. Effect of isometric tension development. Circ Res. 1972 Sep;31(3):317–327. doi: 10.1161/01.res.31.3.317. [DOI] [PubMed] [Google Scholar]
- Posner B. I., Mierzwinski L., Fallen E. L. Studies on amino acid levels and transport in the mechanically stressed rat heart. J Mol Cell Cardiol. 1973 Jun;5(3):221–233. doi: 10.1016/0022-2828(73)90063-1. [DOI] [PubMed] [Google Scholar]
- Pratt O. E. An electronically controlled syringe drive for giving an injection at a variable rate according to a preset programme. J Physiol. 1974 Mar;237(2):5P–6P. [PubMed] [Google Scholar]
- Pratt O. E. The transport of metabolizable substances into the living brain. Adv Exp Med Biol. 1976;69:55–75. doi: 10.1007/978-1-4684-3264-0_5. [DOI] [PubMed] [Google Scholar]
- Scharff R., Wool I. G. Accumulation of amino acids in muscle of perfused rat heart. Effect of insulin. Biochem J. 1965 Oct;97(1):257–271. doi: 10.1042/bj0970257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]