Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1978 Sep;282:345–352. doi: 10.1113/jphysiol.1978.sp012467

The interactions of protons, calcium and potassium ions on cardiac Purkinje fibres.

R H Brown Jr, I Cohen, D Noble
PMCID: PMC1282743  PMID: 31464

Abstract

1. In sheep Purkinje fibres, acidosis shifts the steady-state current-voltage relation in an inward direction over a wide range of negative potentials. The reversal potential for iK2 is shifted in a positive direction. These changes are consistent with K+ accumulation in the extracellular spaces of the Purkinje fibre. 2. These effects of acidosis are completely prevented by increasing [K]0 from the normal range (2.7--5.4 mM) to 10.8 mM. 3. Increasing [Ca]0 from 2 to 6 mM also produces an inward shift in the steady-state current-voltage relation and a positive shift of the iK2 reversal potential. 4. In 10.8 mM-[K]0 these effects are absent even when [Ca]0 is increased to 20 mM. 5. One possible explanation is that K+ ions may protect the Na pump from inhibition by protons and Ca2+ ions. Alternative explanations are also discussed.

Full text

PDF
345

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balasubramanian V., McNamara D. B., Singh J. N., Dhalla N. S. Biochemical basis of heart function. X. Reduction in the Na+-K+-stimulated ATPase activity in failing rat heart due to hypoxia. Can J Physiol Pharmacol. 1973 Jul;51(7):504–510. doi: 10.1139/y73-074. [DOI] [PubMed] [Google Scholar]
  2. Bassingthwaighte J. B., Fry C. H., McGuigan J. A. Relationship between internal calcium and outward current in mammalian ventricular muscle; a mechanism for the control of the action potential duration? J Physiol. 1976 Oct;262(1):15–37. doi: 10.1113/jphysiol.1976.sp011583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baumgarten C. M., Isenberg G. Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers during voltage clamp hyperpolarization and depolarization. Pflugers Arch. 1977 Mar 11;368(1-2):19–31. doi: 10.1007/BF01063450. [DOI] [PubMed] [Google Scholar]
  4. Brown R. H., Jr, Noble D. Displacement of activator thresholds in cardiac muscle by protons and calcium ions. J Physiol. 1978 Sep;282:333–343. doi: 10.1113/jphysiol.1978.sp012466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen I., Daut J., Noble D. An analysis of the actions of low concentrations of ouabain on membrane currents in Purkinje fibres. J Physiol. 1976 Aug;260(1):75–103. doi: 10.1113/jphysiol.1976.sp011505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Di Francesco D., McNaughton P. A. The effects of calcium on outward membrane currents in Purkinje fibres from sheep hearts [proceedings]. J Physiol. 1977 Aug;270(1):47P–48P. [PubMed] [Google Scholar]
  7. Ferrier G. R., Moe G. K. Effect of calcium on acetylstrophanthidin-induced transient depolarizations in canine Purkinje tissue. Circ Res. 1973 Nov;33(5):508–515. doi: 10.1161/01.res.33.5.508. [DOI] [PubMed] [Google Scholar]
  8. Isenberg G., Trautwein W. The effect of dihydro-ouabain and lithium-ions on the outward current in cardiac Purkinje fibers. Evidence for electrogenicity of active transport. Pflugers Arch. 1974;350(1):41–54. doi: 10.1007/BF00586737. [DOI] [PubMed] [Google Scholar]
  9. Isnberg G. Is potassium conductance of cardiac Purkinje fibres controlled by (Ca2+)? Nature. 1975 Jan 24;253(5489):273–274. doi: 10.1038/253273a0. [DOI] [PubMed] [Google Scholar]
  10. Kass R. S., Tsien R. W. Control of action potential duration by calcium ions in cardiac Purkinje fibers. J Gen Physiol. 1976 May;67(5):599–617. doi: 10.1085/jgp.67.5.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lederer W. J., Tsien R. W. Proceedings: Transient inward current underlying strophanthidin's enhancement of pace-maker activity in Purkinje fibres. J Physiol. 1975 Jul;249(1):40P–41P. [PubMed] [Google Scholar]
  12. Maughan D. W. Some effects of prolonged polarization on membrane currents in bullfrog atrial muscle. J Membr Biol. 1973;11(4):331–352. doi: 10.1007/BF01869829. [DOI] [PubMed] [Google Scholar]
  13. Noble S. J. Potassium accumulation and depletion in frog atrial muscle. J Physiol. 1976 Jul;258(3):579–613. doi: 10.1113/jphysiol.1976.sp011436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wada Y., Goto M. Effects of pH on the processes of excitation-contraction coupling of bullfrog atrium. Jpn J Physiol. 1975;25(5):605–620. doi: 10.2170/jjphysiol.25.605. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES